A Faster Algorithm for Detecting Network Motifs

Sebastian Wernicke

Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Fed. Rep. of Germany wernicke@minet.uni-jena.de

Outline

Network Motifs

"Evolution preserves modules that define specific function."

Motifs are those subgraphs which occur in higher frequencies than in random graphs.

Network Motifs

Detecting Motifs

Subgraph Sampling

```
Algorithm: EDGE SAMPLING (G, k) (ESA)
Input: A graph G = (V, E) and an integer 2 \le k \le |V|.
Output: Vertices of a randomly chosen size-k subgraph in G.

01 \quad \{u, v\} \leftarrow \text{random edge from } E
02 \quad V' \leftarrow \{u, v\}
03 \quad \text{while } |V'| \ne k \text{ do}
04 \quad \{u, v\} \leftarrow \text{random edge from } V' \times N(V')
05 \quad V' \leftarrow V' \cup \{u\} \cup \{v\}
06 \quad \text{return } V'
```

Previous Approach [Kashtan et al., Bioinformatics, 2004]

Subgraph Sampling

Both graphs have 28 size-3 subgraphs.

Probability of sampling the triangle here: 1/6

Probability of sampling the triangle here: 1/16

Previous Approach [Kashtan et al., Bioinformatics, 2004]

Subgraph Counting

New approach is based on deterministic subgraph enumeration.

Sampling from Counting

Randomized traversal of search tree yields uniform sampling.

Performance

Quality

Subgraph Significance

Old way: Explicit generation > 1000 graphs with sampling and grouping for each (again)

New way: Just count!

Given *k* vertices: how often do they induce a given subgraph?

Direct Calculation Quality

		\wedge											
COLI $\langle \mathcal{C}_k^i angle \ \langle \hat{\mathcal{C}}_k^i angle$	9.1e-1	3.7e-2	1.9e-4	5.0e-2	1.4e-3	$2.1\mathrm{e}\text{-}6$	7.6e-8	3.4e-7	2.9e-6	2.9e-5	8.0e-7	_	_
$\langle \hat{\mathcal{C}}_{m{k}}^i angle$	9.0e-1	4.2e-2	2.6e-4	5.5e-2	1.4e-3	2.1e-6	1.3e-7	8.7e-8	2.3e-6	4.4e-5	1.1e-7	8e-12	6e-15
$\langle \mathcal{C}_k^i angle / \langle \hat{\mathcal{C}}_k^i angle$	1.0	0.9	0.7	0.9	1.0	1.0	0.6	3.9	1.3	0.7	7.4		
YEAST $\langle {\cal C}_k^i \rangle$	9.1e-1	3.7e-2	1.8e-4	5.0e-2	1.4e-3	9.5e-7	_	2.6e-7	2.3e-6	2.9e-5	3.4e-7	_	_
$\langle \hat{{\cal C}}_{m k}^i angle$	8.9e-1	3.0e-2	1.2e-4	7.6e-2	1.2e-3	1.5e-6	2.8e-8	4.4e-8	5.4e-7	1.0e-5	1.0e-7	1e-14	1e-15
$\langle {\cal C}_k^i angle / \langle \hat{\cal C}_k^i angle$												-	
ELEG. $\langle {\cal C}_k^i \rangle$	2.0e-1	3.3e-1	2.7e-2	3.7e-1	3.3e-2	1.7e-3	1.5e-3	2.0e-3	4.4e-3	2.9e-2	1.4e-3	3.8e-4	1.5e-5
$\langle \hat{{\cal C}}_{m k}^i angle$	2.0e-1	3.3e-1	2.9e-2	3.6e-1	3.6e-2	$2.0\mathrm{e}\text{-}3$	1.9e-3	2.3e-3	4.7e-3	3.0e-2	1.5e-3	4.0e-4	1.5e-5
$\langle {\cal C}_k^i angle / \langle \hat{\cal C}_k^i angle$	1.0	1.0	0.9	1.0	0.9	0.9	0.8	0.9	0.9	1.0	0.9	0.9	1.0
YTHAN $\langle {\cal C}_k^i angle$	4.1e-1	2.3e-1	3.3e-2	2.2e-1	5.1e-2	3.0e-3	2.7e-3	2.8e-3	2.0e-3	3.6e-2	5.3e-3	1.1e-3	5.8e-5
$\langle \hat{\mathcal{C}}_{m{k}}^i angle$	3.7e-1	2.4e-1	3.9e-2	2.2e-1	5.6e-2	3.5e-3	4.8e-3	5.0e-3	3.0e-3	5.2e-2	8.1e-3	2.7e-3	7.5e-4
$\langle \mathcal{C}_k^i angle / \langle \hat{\mathcal{C}}_k^i angle$	1.1	1.0	0.9	1.0	0.9	0.8	0.6	0.6	0.6	0.7	0.6	0.4	0.1

Conclusion

Summary

We have extended the tractability of detecting network motifs. This allows for faster detection of larger motifs than previously possible.

To Do

There remains much room for more theory: Extending the direct calculation, building motifs from motifs, analyzing the algorithms.

What We Do

Implementing the algorithms, adding new functionalities and a graphical interface. http://www.minet.uni-jena.de/~wernicke/motifs/