Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering

Sebastian Wernicke*

wernicke@minet.uni-jena.de

*Research supported by Deutsche Telekom Stiftung
Prologue
Graph-Modeled Clustering

Data Point

Correlation

Data

Vertex / Node

Edge / Link

Graph / Network
Graph-Based Clustering

Potential Tasks to Face

Find a large complete subgraph (clique).
Partition the graph into disjoint cliques.
Cover the graph with cliques.

Cluster(s) in Data

Dense / Complete Subgraph(s)
Toolbox for Hard Problems

- Heuristics
- Brute-Force
- Sidestepping
- Approximation Algorithms
- (Integer) Linear Programming
Toolbox for Hard Problems

- Heuristics
- Approximation Algorithms
- (Integer) Linear Programming
- Brute-Force

Sidestepping
- Fixed-Parameter Algorithms
 - data reduction
 - search trees
 - and more!
Part I
Fixed-Parameter Tractability Primer
Drosophila of Fixed-Parameter Algorithmics: Vertex Cover

Given a graph G, find a set C of at most k vertices such that each edge has at least one endpoint in C.
Drosophila of Fixed-Parameter Algorithmics: Vertex Cover

Given a graph \(G \), find a set \(C \) of at most \(k \) vertices such that each edge has at least one endpoint in \(C \).
Vertex Cover – Naïve Brute-Force Approach

Graph of size n leads to runtime of $O(2^{nm})$.
Vertex Cover – Better Approach

Given graph G, find a set C of at most k vertices such that each edge has at least one endpoint in C.

Main idea: For each edge, one endpoint must be in C.
Vertex Cover – Better Approach

Main idea: For each edge, one endpoint must be in \(C \).

Given graph \(G \), find a set \(C \) of at most \(k \) vertices such that each edge has at least one endpoint in \(C \).

Main idea: For each edge, one endpoint \textit{must} be in \(C \).
Vertex Cover – Better Approach

Given graph G, find a set C of at most k vertices such that each edge has at least one endpoint in C.

Main idea: For each edge, one endpoint \textit{must} be in C.
Main idea: For each edge, one endpoint must be in C.

Given graph G, find a set C of at most k vertices such that each edge has at least one endpoint in C.

Main idea: For each edge, one endpoint must be in C.
Vertex Cover – Better Approach

Main idea: For each edge, one endpoint must be in C.

Given graph G, find a set C of at most k vertices such that each edge has at least one endpoint in C.

Main idea: For each edge, one endpoint $must$ be in C.

$k-1$
Vertex Cover – Fixed-Parameter Approach

Graph of size n leads to runtime of $O(2^k m)$.
Fixed-Parameter Tractability

Classical complexity theory: One dimensional. Hard problems take \textit{exponential time in instance size} to solve.

The fixed-parameter approach: Two-dimensional. Hard problem takes \textit{exponential time in solution structure} to solve.
Fixed-Parameter Tractability

Classical complexity theory: One dimensional. Hard problems take exponential time in instance size to solve.

The fixed-parameter approach: Two-dimensional. Hard problem takes exponential time in solution structure to solve.
Fixed-Parameter Tractability

Classical complexity theory: One dimensional. Hard problems take exponential time in instance size to solve.

The fixed-parameter approach: Two-dimensional. Hard problem takes exponential time in solution structure to solve.
Fixed-Parameter Tractability

\[P \quad O\left(n^{O(1)} \right) \]

\[\text{FPT} \quad O\left(f(k) \cdot n^{O(1)} \right) \]

\[\text{NP} \quad O\left(c^n \right) \]
If a problem is fixed-parameter tractable, we can polynomial-time reduce an instance of size n to an instance of size $f(k)$ (called kernel). Example: A VERTEX COVER instance can be reduced to an instance of size $2k$, where k is the size of a minimum cover. [Chen et al., J. Alg., 2001]

Search trees are depth-bounded by the parameter k.

Not all problems are fixed-parameter tractable.
Part II
Case Studies
Case Studies

Input

CLIQUE
Task: Find the largest clique in the graph.

CLUSTER EDITING
Task: Add / remove few edges so that cliques remain

CLIQUE COVER
Task: Find few cliques to cover all edges.
CLIQUE – Main Idea

Graph has clique of size \((n-k)\).

Complement graph has independent set of size \((n-k)\).

Complement graph has vertex cover of size \(k\).

Input: An \(n\)-vertex graph
CLIQUE – Results

Vertex Cover
Can be solved optimally with a search-tree of size $O(1.28^k)$.
Workhorse in practice is data reduction.
[Abu-Khzam et al., Proc. ALENEX 2004]

Experimental
Graphs with 10^5 vertices and with $k \leq 300$ can be solved in practice

Intractability
Parameterized by the clique size is not fixed-parameter tractable. Graph must contain a large clique.
CLUSTER EDITING – Main Idea

Task: Add / remove few edges so that cliques remain

Basic search tree strategy: Either delete one of the edges or add the missing one
With parameter k, an instance can be reduced to a kernel of size k^3 in polynomial time.

For CLUSTER EDITING, $O(1.92^k + |V|^3)$.
[Gramm et al., Algorithmica, 2004]

When only edge deletions are allowed (CLUSTER DELETION), this reduces to $O(1.77^k + |V|^3)$.
[Gramm et al., Theory of Computing Systems, 2005]
CLIQUE COVER – Results

Task: Find few cliques to cover all edges.

Workhorse
Data reduction rules prove quite effective although they only guarantee a kernel of size $O(2^k)$.

Interleaving
Combining search trees and data reduction can solve instances with clique cover sizes of about 150.

[Gramm et al., Proc. ALENEX 2006]
Part III
Epilogue
Conclusion

Fixed-Parameter Tractability belongs into the toolbox of algorithm designers - also in the area of graph-modeled data clustering.

Reduction rules and data reduction may be very effective despite of seemingly impractical worst-case bounds.

More experimental work and algorithm engineering needs to be done in cooperation with theorists. Be invited!
Further Reading
Further Reading

DOWNEY / FELLOWS: PARAMETERIZED COMPLEXITY (1999)
FIRST BOOK ON FPT
Further Reading

Downey / Fellows: Parameterized Complexity (1999) - First book on FPT

Further Reading

- Downey / Fellows: Parameterized Complexity (1999)
 - First book on FPT
 - Covers theory
 - Covers algorithmics
Group Members Working on Fixed-Parameter Algorithms

Rolf Niedermeier
Chair

Michael Dom
Jiong Guo
Falk Hüffner
Hannes Moser
Sebastian Wernicke
Jochen Alber
Jens Gramm

http://theinf1.informatik.uni-jena.de/
Practical Fixed-Parameter Algorithms for Graph-Modeled Data Clustering

Sebastian Wernicke*

wernicke@minet.uni-jena.de

*Research supported by Deutsche Telekom Stiftung