Diplomarbeit

On the Algorithmic
Tractability of
Single Nucleotide
Polymorphism (SNP)
Analysis and Related Problems

Sebastian Wernicke

23. September 2003

Gutachter:
PD Dr. Rolf Niedermeier
Prof. Dr. Franz Oberwinkler

Betreuer:
PD Dr. Rolf Niedermeier
Dr. Jens Gramm Dipl.-Inform. Jiong Guo

Nachwuchsgruppe Theoretische Informatik / Parametrisierte Algoritdmm
Wilhelm-Schickard-Institut far Informatik
Universitat Tubingen

Dr. Jochen Alber

Selbststandigkeitserkiarung

Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig und nur mit den angegebe-
nen Hilfsmitteln angefertigt habe. Alle Stellen, die im Wortlaut oder dem Sinne nach axderen
Werken entnommen sind, wurden durch Quellenangaben als Entlehnung kenntlich gemacht.

Tubingen, den 23. September 2003 Sebastian Wernicke

Contents

1 Introduction 1
1.1 The Human Genome and SNPs 1
1.2 OverviewofthisWork 2

2 Biological Background and Motivation 5
2.1 Basic Genetic Terminology e 5
2.2 Anintroductionto SNPs 7
2.3 Importance and Prospects of SNP Mapping 9

2.3.1 SNPs in the Study of Population History 9
2.3.2 SNPs and Pharmacogenetics, 11

3 Computer Science Preliminaries and Notation 15
3.1 Notation for Matrices and Graphs 5
3.2 Crash Course in Computational Complexity Theory 16

3.2.1 Machine-Independent Analysis 16
3.2.2 Running Time|Keeping Score 18
3.2.3 Complexity Classes i 22
3.3 Fixed-Parameter Tractability (FPT) 24
3.3.1 An E cient Algorithm for Vertex Cover 24
3.3.2 Formal De nition and Aspects of FPT 27

4 Submatrix Removal Problems 31
4.1 Denitions and Terminology 31
4.2 A Reduction to d-Hitting Set L o o 35

4.2.1 Finding Forbidden Submatrices 35
4.2.2 Approximability and Fixed-Parameter Tractability Results 37
4.3 Hardness Results 39
4.3.1 Overview of Results|Four Theorems 39
4.3.2 Proofs for Theorems 4.13and 4.14 40

\'

Vi

4.3.3 Proof of Theorem4.11
4.3.4 Proof of Theorem4.12
4.4 Discussion and Future Extensions

5 Perfect Phylogeny Problems

5.1 Phylogenetic Trees
5.1.1 Introduction and Motivation
5.1.2 Formal Denition.,

5.2 Perfect Phylogeny Problems

5.3 Relation to Forbidden Submatrix Problems

5.4 Minimum Species Removal

5.5 Minimum Character Removal

6 Graph Bipartization

6.1 Introduction and Known Results

6.2 ReducingEdge Bipartization to Vertex Bipartization

6.3 A Branch&Bound Approach
6.3.1 Initial Heuristics
6.3.2 Data ReductionRules

6.4 Implementation and Comparison of the Algorithms
6.4.1 UsingtheProgram
6.4.2 Some Implementation Details
6.43 Testsand TestResults

7 Using Graph Bipartization in SNP Analysis

7.1 Introduction and Overview of Results
7.2 SNP Haplotype Assembly
7.3 Inferring Haplotypes from Genotypes
7.3.1 Minimum Genotype Removal
7.3.2 Minimum Site Removal
7.4 Testing Branch&Bound on SNP Data

8 Conclusion

8.1 Summary of Results and Future Extensions
8.2 Acknowledgments.,

List of Figures

Bibliography

CONTENTS

Chapter 1

Introduction

1.1 The Human Genome and SNPs

Throughout its life, an individual's hereditary potentials and limits are deter mined by its
very own genes. Consequently, a lot of e ort has been put into the Human Genome Preict.

As of April 2003, 95.8% of the human genome has been sequenced in a very high qualisee
[NCBI03] for up-to-date information) and a goal has been set asking for a complte sequence
due the end of this year as more and more chromosomes become fully mapped (see,,e.qg.
[Heil03]). However|quoting from [WeHu02]| this achievement is merely the founda tion

for far deeper research as

\...we are ending the era of determining the sequence of theegetic code and
entering the beginning of the age of deciphering the biology life underlying that
code.”

Hearing that a 95.8 percentile portion of the human genome has been sequenced, one is
immediately bound to ask as to which human's genome we are actually referringajafter

all, every human has a unique genetic markup. At the beginning of the sequencing process
by the Human Genome Project, geneticists thought they would indeed have to make a choe

as to who would be chosen to provide a reference sequence of the four nucleotidesC, G,
and T of his DNA.! One individual would surely constitute a \blueprint" of the human
species, the study of genetic variation among our species would however gain gt insight
from this [ChakO01].

The sequence we have obtained by the Human Genome Project fortunately was not obtained
through making that kind of choice: Genetic variation among humans can|in almos t every
case|be traced back to variations that occur within a single nucleotide. Such a site where
there are two di erent nucleotides to be found in two di erent DNASs, is commonly r eferred
to as a Single Nucleotide Polymorphism (SNP, pronounced \snip") [HGSCO01]. A simpd
de nition is given by [StonO01]:

\...DNA is a linear combination of four nucleotides; compare two sequences,
position by position, and wherever you come across di erentucleotides at the
same position, that's a SNP."

1A thorough introduction to genetic terminology including S NPs is given in Chapter 2

1

2 CHAPTER 1. INTRODUCTION

During the Human Genome Project, 1.4 million sites of genetic variations hae been mapped
[SNPO1] along a reference sequence composed of hundreds of di erent genomes. The reason
why it was possible to combine such a multitude of di erent individuals' genomes nto a
coherent map of the human genome lies in the fact that DNA is mostly conserved amnd
SNPs . The importance of SNPs is outlined e.g. in [Ston01] who refers to them as théread
and butter of DNA sequence variation" for they are witnesses of unique past mutations in
our genetic markup. Therefore, SNPs can give valuable hints about common evolutiwary
ancestors. But there is an even more severe economic in uence: As genes are widely held
responsible for the likeliness for the acquisition of certain diseases and thesponsiveness
to various medical treatments, SNPs can either be made directly responsible forugh a
variation or they may at least aid in the identi cation of the corresponding g ene?

In this work, we shall deal with topics from the eld of theoretical bioinforma tics that are
connected to SNPs. Recent research [LBILS01, EHKO3] has shown that all the useful appli
cations and prospects of SNP data come at a price: Many computational problems aiiisg
during the acquisition and application of SNP data have been proven to be computatioally
\hard", meaning that they are widely believed to be impossible to solve in reasnable time 3
However, there are techniques such as xed-parameter tractability and data-reduction (lwth
to be introduced in more detail throughout this work) that allow even \hard" probl ems to
be solved e ciently in practical applications. This work explores the possible use of these
technigues for computationally hard problems connected to SNP analysis.

1.2 Overview of this Work

The main part of this work (Chapters 2 to 7) can be divided into three parts:

Part 1 (Chapters 2 and 3): Introducing the Terminology

This work brings together two areas of science|biology and informatics|that have
only recently been connected in the emerging (and vastly growing) research eld of
bioinformatics. In order to achieve a common basis for Parts 2 and 3 of this work,
Part 1 intends to introduce the computer scientist to the relevant biological background
and terminology (Chapter 2), and to familiarize the biologist with the rel evant topics
from theoretical computer science (Chapter 3).

Chapter 2 rst introduces some terminology from the eld of genetics, thereby de ning
SNPs. We then motivate the analysis of SNPs by two applications: The analyis
of evolutionary development and the eld of pharmacogenetics. Especially the eld
of pharmacogenetics is capable of having an enormous impact on medicine and the
pharmaceutical industry in the near future by using SNP data to predict the e cacy

of medication.

Chapter 3 gives a brief introduction to the eld of computational complexity. We wi |l
see and motivate how algorithms are analyzed in theoretical computer science. This
will lead to the de nition of \complexity classes", introducing the class NP which
includes computationally hard problems. Some of the hard problems in the clasBlP
can be solved e ciently using the tool of xed-parameter tractability , introduced at
the end of this chapter.

2Section 2.3 gives a detailed introduction to the prospects o f SNP mapping and analysis.
SChapter 3 introduces the topic of computational hardness in more detail.

1.2. OVERVIEW OF THIS WORK 3

Part 2 (Chapters 4 and 5): Applying SNP Data (Perfect Phylogenies)

An important application of SNP data is in the analysis of the evolutionary history of
species developmentghylogenetic analysi3. As will be made plausible in Chapter 5,
using SNP data is|in many ways|superior to previous approaches of phylogenetic
analysis. In order to analyze the development of species using SNP data, an under-
lying model of evolution must be specied. A popular model is the so-calledperfect
phylogeny but the construction of this phylogeny is a computationally hard problem
when there are inconsistencies (such as read-errors or an imperfect t to the model of
perfect phylogeny) in the underlying data.

Chapter 4 analyzes the problem of \forbidden submatrix removal" which is closely
connected to constructing perfect phylogenies|we will see in Chapter 5 that its com-
putational complexity is directly related to that of constructing a perfect phylogeny

from data which is partially erroneous. In this chapter, we analyze the algoithmic

tractability of \forbidden submatrix removal”, characterizing cases where this problem
is NP-complete (being xed-parameter tractable in general).

Chapter 5 introduces the concept, motivation, and some known results for phylogeneti

analysis. We then apply the results from Chapter 4 to perfect phylogeny problems,
i.e., the problem of dealing with data-inconsistencies with respect to the underlying
evolutionary model of perfect phylogeny. It will be shown that these problems ae all

xed-parameter tractable and can be e ciently solved using existing algorithms.

Part 3 (Chapters 6 and 7): Obtaining SNP Data

Basically, obtaining SNP data requires sequencing two DNA strands and comparing
them to each other. The problems lie in the details: Firstly, current techniques only
allow sequences of at most 500 base pairs in length to be sequenced as a whole, and
secondly, it is|in terms of cost and labor|often only possible to detect the presence

of SNP sites rather than being able to tell which of the two DNAs contained which
base. Part 3 of this work analyzes the computational complexity of these two prol#ms

by relating them to a graph-theoretic problem* called Graph Bipartization

Chapter 6 introduces the computationally hard problem of Graph Bipartization ,
stating some known results and showing the relative hardness of the twdsraph
Bipartization -problem variants Edge Bipartization and Vertex Bipartization

(the latter one of which is proven to be at least as hard as the former one). Htowing
this introduction, we develop and test practical algorithms for Graph Bipartization
These algorithmsj|although they require a long time even for medium-sized general
graphs|prove to be e cient for the Graph Bipartization problems that arise during
the acquisition of SNPs, even if these graphs contain a few hundred vertices.

Chapter 7 introduces a formal de nition of the computational problems of SNP analysis
and proves their close relationship toGraph Bipartization . The last section of this
chapter shows that the algorithms developed in Chapter 6 can be used to e ciently
solve the presented problems by solving their correspondin@raph Bipartization
problem.

This work is concluded by Chapter 8, presenting a summary of results and suggestionsrf
future research related to this work.

4Graphs are introduced in Chapter 3

CHAPTER 1. INTRODUCTION

Chapter 2

Biological Background and
Motivation

In this chapter, we establish some basic terminology from the eld of genetics u=d through-
out this work®. Afterwards, we introduce SNPs and current techniques used to detect and
map them. The last section of this chapter provides an introduction to pharmacogendts|
the area that sparked economic and scienti ¢ interest in SNPs.

2.1 Basic Genetic Terminology

All living organisms encode their genetic information in the form of deoxyribonucleic acid
(DNA, for short). DNA is a double-helix polymer where each strand is a long chain of
polymerized monomer nucleotides?® Basically, these are four di erent nucleotides; to a
deoxyribose sugar bonded with a phosphate, one of four possible bases is attachtedorm a
nucleotide; these possible bases include the twourines (adenine and guanine) and the two
pyrimidines (cytosine and thymine).® For abbreviation, the nucleotides in a strand of DNA
are denoted by the rst letter of their respective base (adenine byA, guanine by G, cytosine
by C, and thymine by T). The nucleotides are joined to form a single strand of DNA by
covalently* bonding a phosphate of one nucleotide with the sugar of the next, a strand starts
with a sugar (this end is called the3'-end) and ends with a phosphate (called5'-end).> Two
single strands of DNA are held together by hydrogen bonds between the bases of opjrus
nucleotides in the double-strand. These bonds speci cally bind adenine with thymine and
cytosine with guanine. The structure of DNA is shown in Figure 2.1. Although being

1For a more thorough introduction on genetics, see, e.g., [GM S00], [GGLO02] or the chapters on genetics
in biochemistry books such as [VoVo95] or [BJS02].

2In general, polymer designates the class of very large molecules (macromolecules) that are multiples of
simpler chemical units called monomers.

3Actually, DNA has a lot less homogenous buildup than this bec ause the nucleotides can be further
modi ed by an organism at their deoxyribose sugar. For examp le, bacteria use such a modi cation to be
able to distinguish their own DNA from foreign DNA coming, e. g., from a phage (bacterial virus). However,
such modi cations will not have to concern us in this work bec ause even in the presence of them, the basic
principles of DNA replication and translation hold.

4A covalent bond is the interatomic linkage that results from two atoms forming a common electron
orbital.

5The terms 3' and 5' are due to the enumeration of the carbon ato ms in the deoxyribose sugar.

5

6 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

3| ACCGATATCEGA
5| TGGCTATAGECT

Figure 2.1: Chemical structure of DNA (above) and its abbreviated notation (below). The
letters within the molecular structure above stand for phosphate P), deoxyribose ©), ade-
nine (A), guanine (G), cytosine (C), and thymine (T). The dashed vertical lines indicate
hydrogen bonds.

just two strands of bases attached to a phosphate-sugar backbone, DNA can be extrenyel
long by molecular measure$. In order for the DNA to t into a single cell 7 whilst still
being accessible for replication and transcription into RNA to make proteins,human DNA
is organized into very dense complexes of proteins and DNA, calledhromosomes Humans
have 22 pairs of autosomésand one pair of sex chromosomes (with females carrying two
\X" chromosomes and men one \X" and one \Y" chromosome) within|almost|each cel .

The complete DNA sequence of an organism is called itgenome its genetic constitution
as a whole is calledgenotypd. Genetic areas of interest in a genome are calletbci'®. A
geneis a unit of DNA that encodes hereditary information, i.e., the sequence of all proteins
expressed by an organism, on a locus of an individual's chromosomé. Any one of two
or more genes that may occur alternatively at a given locus on a chromosome is lged an
allele. A combination of alleles that is likely to be inherited as a whole and may be éund on
one chromosome is called &aplotype The sequence of DNA within a gene determines the
synthesis of proteins, experiments indicating that each gene is responsible foh¢ synthesis
of one protein. Each one of the 20 proteinogenic amino acid$ is encoded by one or more
triplets of bases. Mutations, disruptions altering the genetic information (and therefore in
most cases the corresponding protein as well), may be due to deleting, inserting, regaing,
or rearranging nucleotides in a gene; they are responsible for the unique individual geneti
markup of organisms. As already mentioned above, a human cell contains two pges of
every chromosome (excluding the gender-speci ¢ chromosomes X and Y), where one copy
is inherited from each parent. Since each parent has its unique genetic markup, equivalen

6E.g., the diploid DNA of a human being has a total length of app roximately 1.8m [VoVo95].

7With a few exceptions, every cell in a living organism contai ns its whole hereditary information.

8 Autosomes are those chromosomes that control the inheritan ce of all characteristics except sex-linked
ones

9The genotype of an organism is the basis for its phenotype, where phenotype denotes the two or more
distinct forms of a characteristic within a population.

101 gci is the plural form of \locus".

11Note that the majority of DNA is presumed not to contain any genetic information [VoVo95].

12proteins are basically chains of polymerized amino acids.

2.2. AN INTRODUCTION TO SNPS 7

SNP sites

—= I\ T~

3| ACTATACTCAGCACTCTAGCATCTA(BSACT®EBt DNA strand

3| ACAAAACTGAGCACTATTGGATCTA(BGACTEEFond DNA strand

Figure 2.2: Mapping SNPs by comparison of two individuals' DNA sequence. Note thhas
mentioned in the text, a single nucleotide variation must occur in at least 1% & a population's
individuals in order to be called \polymorphism" instead of \substitution".

genes in the two chromosomes may di er. Identical alleles on both chromosomese referred
to as beinghomozygousdi erent alleles are denoted heterozygous

2.2 An Introduction to SNPs

A polymorphismis a region of the genome that varies between di erent individuals'® Con-
sequently, asingle nucleotide polymorphism(SNP, pronounced \Snip") is a genetic variation
caused by the change of one single nucleotide (see Figure 2.2). These variatiomscur quite
frequently among humans|on average, a SNP may be found approximately every 191 10°
bases (\1.91 kilobases"), implying that over 90% of sequences longer than 20 &lbases will
contain a SNP [Chak01]. SNPs are not evenly distributed across chromosomes,ost genes
contain just one or two SNPs. Currently, 93% of all genes are known to conta at least
one SNP [SNPO01]. Depending on whether they are found within genes or not, SNPs are
either labeled cSNPs ¢oding SNPs) or ncSNPs ion-coding) SNPs. Generally, ncSNPs ap-
pear more frequently than cSNPs [Mu02]. Recall from the last section that moe than one
triplet of bases may encode a certain amino acid. Often, triplets that encode the same
amino acid di er in a single nucleotide from each other. If a cSNP does not introduce a
amino acid change in the encoded protein, it is named sSNPsynonymousSNP), and nsSNP
(non-synonymousSNP) otherwise!* In the human genome, the ratio of SSNPs to snSNPs
is approximately one to one [Carg99].

Before outlining some prospects and the scienti ¢ as well as economic impact of SN&halysis,
we will now give a brief overview as to how SNPs are identi ed. In his survey on theusage
of SNPs as a tool in human genetics, Gray [GCS00] names four methods for SNP deteantt

13 More precisely, a polymorphism has been de ned as \ the least common allele occurring in 1% or greater
of a population " [Mare97], thereby distinguishing a polymorphism from a substitution that may occur in
less than 1% of a population's individuals.

14For example, there is an nsSNP in the gene for the HLA-H protei n, where a crucial disul de bond is
disrupted by changing the 282nd amino acid from cysteine to t yrosine, causing a metabolic disorder known
as hereditary hemochromatosis [PSS97].

8 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

Identi cation of single strand conformation polymorphisms (SSCPs): In this technique,
DNA fragments of a locus containing the presumed SNP are ampli ed (e.g., multipled
into many identical fragments) using PCR ampli cation. ** These fragments are then
put on a polyacrylamide gel to which a current of diluting liquid is applied. Due to

di erent folding of DNA fragments with di erent sequences, the speed of fragments
will di er if they contain SNPs. The presence of SNPs may afterwards be con rmed
by sequencing the respective patterns. This method is widely deprecated because of
its low throughput and sometimes poor detection rate of about 70%.

Heteroduplex Analysis: During PCR ampli cation of an individual that is heterozy-
gous for a SNP, a heteroduple¥ may be formed between two strands that are com-
plementary to each other with exception of the SNP site. These heteroduplexes can
then be detected either as a gel band (analogously to SSCP detection) or using high-
performance liquid chromatography (HPLC). This SNP detection method combines
reasonable throughput rates of 10 minutes per sample with a high detection rate be-
tween 95% and 100%.

Direct DNA sequencing: This is the currently favored high-throughput method for
detecting SNPs. According to [Carg99], almost a million base pairs can be ahgzed
in 48 hours with detection rates for heterozygotes ranging between 95% (using cheap
\dye-terminator sequencing") and 100% (using a more expensive and laborious method
known as \dye-primer sequencing”). Dye-terminator sequencing has been used by the
SNP Consortium [Hold02] which published over 1.4 million SNPs in human DNA
[SNPO1]. Comparing equal loci in di erent versions of high-quality DNA sequences
has recently led to an increase ofn silico detection of SNPs.

Variant detector arrays (VDAS): In this technique, glass chips with arrays of oligonu-
cleotides are used to bind speci ¢ sequences derived in PCR ampli cation. VDA has
a quality comparable to dye-terminator sequencing and is especially useful in rapidly
scanning large amounts of DNA sequenc¥’

It should also be stressed that for SNP detection, an appropriate set of allelesdm which
SNPs are to be inferred needs to be chosen, as the di erent alleles occur with quite di ent
frequencies in di erent populations (such as human ethnic groups).

In Chapter 7, we will be concerned with the algorithmic tractability of two pr oblems that
arise during the identi cation of SNPs: First, the sequencing of chromosomes in aer to
obtain haplotypes has to deal with some errors in the reading and assembling procesf the
DNA sequences (this will be discussed in more detail in Chapter 7). Second, haplotypes
are|due to prohibitively high cost and labor|seldomly identi ed by sequencing single
chromosomes. Rather, genotype information (both copies of a chromosomé3 obtained,
from which haplotypes can be inferred under certain assumptions. We will see in Cher 7
that both problems are closely related (in a certain way even equivalent) to a poblem called
\graph bipartization" for which we will develop e cient algorithms in Chapter 6.

15The polymerase chain reaction (PCR, for short) can quickly and accurately make numerous id entical
copies of a specic DNA fragment. A PCR machine is capable of p roducing billions of copies of a DNA
fragment in just a few hours. PCR is a widely used technique in diagnosing genetic diseases, detecting low
levels of viral infection and for genetic ngerprinting in f orensic medicine.

16 A heteroduplex may either be a piece of DNA in which the two str ands are di erent, or it is the product
of annealing a piece of MRNA and the corresponding DNA strand

17SNP identi cation through arrays is a rapidly growing marke t responsible for the recent development
of biotechnology companies such as Aymetrix, Applied Biosy stems, Marligen Biosciences, and Orchid
Biosciences, among many others.

2.3. IMPORTANCE AND PROSPECTS OF SNP MAPPING 9

2.3 Importance and Prospects of SNP Mapping

SNPs are mainly useful for two areas of research: the study of population histy (e.g.,
see [BBNEO3]) and|an area of great economical signi cance|pharmacogenetics (e.g., see
[Rose00]). In this section, we will introduce both applications. The algoithmic tractability

of some problems in the study of population history using SNPs is dealt with inChapter 5.

2.3.1 SNPs in the Study of Population History

SNPs often are a basis for various studies of population history (e.g., sg&ish96], [Tish00],

and [Mu02]). Historically, such studies employed gene trees of non-recombining loaiherited

from one parent such as mitochondrial DNA or the Y chromosome [Avis94] A disadvantage
of this approach is that such loci are subject to a lot of stochastic parametrs, which in

turn caused the requirement of vast amounts of loci to be analyzed to gain con dence @&r

the results. The preference for SNPs as genetic markers arose from this problem, 8&\Ps
provide a broad range of unlinked nuclear genetic markers and are thus able to capturea

genome-wide picture of population history [Niel0O]. Furthermore, SNPs are advantageous
over previous methods such as usingicrosatellites'® for population history studies because
they show a very favorable mutation pattern and greatly simplify the task of unbiased
sampling of genetic variation [BBNEO3]:

Mutation pattern: Microsatellites have a mutation rate of 10 ¢ per generation as
opposed to the rate of 108 displayed by SNPs. This makes multiple mutations for a
single SNP unlikely, therefore only two alleles exist of most SNPs. Such a propsr
greatly facilitates populational analysis|e.g., we will make use of it in the algorithmic
inference of haplotypes from genotypes in Chapter 7. Furthermore, mutations in SNPs
are more evenly distributed than in microsatellites, where the mutation rate is often
hard to estimate [BBNEO3].

Unbiased Sampling: Due to their uniform mutation rates, SNPs may be selected at
random in populational studies, avoiding previous bias that arose due to the fact hat
often, only loci with well known mutation rates would be chosen for analyss. Fur-
thermore, [BBNEO3] suggests that cross-species analysis of SNPs can provideater
insight into the natural occurring rate of genome-wide variation than biased bci such
as microsatellites.

SNPs have been of great interest in populational studies due to the phenomenon that often
there is a collection of SNP sites where the individual SNPs are not independent of each
other; rather, a phenomenon calledinkage disequilibrium is observed!® This phenomenon
refers to the fact that often, haplotype combinations of alleles at di erent loci are correlated

in their appearance frequency, forming a so-calledinkage disequilibrium block (LD block)
[DRSHLO1]. The size of LD blocks is often debated and ranges from size suggests of a few
kilobases (in empirical research [Dunn00] and computer simulation experimentskrug99])

to more than a hundred thousand kilobases [Abec01]. Independent of the discussed size, the
presence of linkage disequilibrium is believed to re ect the fact that haplotypes descended

18 Microsatellites are stretches of DNA consisting of tandem r epeats of a small, simple sequence of nu-
cleotides, e.g., GCTGCTGCT...GCT . Often in literature, microsatellites are also referred to simple tandem
repeats (STRs).

19For the human genome, linkage disequilibrium was studied, e .g., in [Reic01].

10 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

SNP maps for the individuals of a large initial population:
states of di erent SNP sites show no correlation

. population narrows ,
' e.g., by selection process.’
/

< H: L I “\populational bottleneck”

I T T T e = - T T !
/ \

// population redevelops
_»~ from bottleneck haplotypes *.

States of rst, fth and seventh SNP site correlate due to
the respective common ancestral haplotype

Figure 2.3: Development of linkage disequilibria in SNP sites: An initial, genetically diverse
population is drastically reduced in its number of individuals (e.g., by selection processes
in a unigue environment). This causes a \populational bottleneck" where only a veryfew

di erent haplotypes remain within a population. Redevelopment of a population based on

this non-diverse genetic material causes linkage disequilibrium in the alleles, whicdecays
over time due to mutations and recombination.

from common ancestral chromosomes; linkage disequilibrium may therefore s be an in-
dicator for populational bottlenecks?°[Mu02]. The phenomenon of linkage disequilibrium
relating to SNPs is illustrated in Figure 2.3.

Linkage disequilibrium of individuals' genes within a population \decays" with p opulation
history due to recombination [HaCl97]. It is believed that linkage disequilibrium around
common alleles is a lot less frequent than around rare alleles, which are gendyayounger
and thus less decayed by recombination [Watt77]. Using these assumptions, Reiaft al.
[Reic01] have shown that they can relate some linkage disequilibria to eventsush as the
last glacial maximum 30 000-15 000 years ago, migration patterns inr&ient Europe, or
the dispersal of anatomically modern humans in Africa. The article mentionsthat for some

20 A populational bottleneck is a period in population history where there are very few individuals in
the population. These individuals then gave rise to the hapl otypes found in a population today|conserved
genetic patterns in the haplotypes can therefore be backwar dly related to the respective ancestral individuals
that lived during the bottleneck.

2.3. IMPORTANCE AND PROSPECTS OF SNP MAPPING 11

populations not as large as Europeans ([Reic01] mentions Yorubans as an exarapl the
resolution of their linkage disequilibrium blocks is too coarse, but nevertheless|referring to
studies such as [Tish96], [Tish00], or [MateO1]|\ [...] simultaneous assessment [of linkage
disequilibria] at multiple regions of the genome provides ra approach for studying history
with potentially greater sensitivity to certain aspects of history than traditional methods
[...]" [Reic01]

Additionally to being able to gain deep biological insights into species developmnt and

population history, the study of linkage disequilibria and the search for coomon ancestors
of species might also have high economical and health political impact. One examgpfor this

is the recent study of the malaria parasite Plasmodium Falciparum in [Mu02], this parasite

has been of intense interest since it infects hundreds of millions of people each yedreing
responsible for almost 3 million annual deaths [Brem01f! An e ective vaccine against
malaria, for example, must trigger an immune response that is equivalent orsuperior to

the one gained by contact with natural antigens. By nding some common SNP regionsn

di erent Plasmodium Falciparum populations, it is the hope of current research to build an
accurate map of the ancestral relationship of variousPlasmodium Falciparum strains. Such a
map of ancestral relationships could help in identifying common antigens for ilfmmunizations

[Gard9g].

It was conjectured in [RLHA98] that the human malaria parasite experienced a ppulational
bottleneck about 5000 years ago, further sparking the hope that it would be psesible to nd
some common drug targets among malaria parasites. Although an extensivaugly of SNPs
on the Plasmodium Falciparum genome carried out by Muet al. [Mu02] have shown that
this is probably not the case andPlasmodium Falciparum is rather a \quite ancient and
diverse" population (with the most recent common ancestor being a few hundred thousand
years old), it is still hoped that some more recent common ancestors of di erenstrains can
be found in order to obtain an assay of promising drug targets and vaccines:

\For the rst time, a wealth of information is available [...] that comprise the
life cycle of the malaria parasite, providing abundant oppdunities for the study
of [the ...] complex interactions that result in disease." [Gard98]

Although the genetic sequence and the insights gained by SNPs alone are no cure for ragh
and other widespread diseases, they seem to be a promising start.

The study of populational history based on traits of individuals (whichlamong o thers|may
be the presence of highly correlated SNP sites) and its algorithmic tractabiliy is studied in
Chapter 5 of this work, where a special model of analysis called perfect phylogenyill be
employed. As will be seen in Chapter 5, SNPs provide very good data for this model du®
their very low mutation rate.

2.3.2 SNPs and Pharmacogenetics

The understanding of SNPs is believed to be a key to the research area known pharmaco-
genetics Using SNPs in pharmacogenetics is of immense economical interest to pharmaceu-
tical companies. It has led to the founding and funding (hundreds of millions of US dollas)

of the SNP Consortium [Hold02], a joint e ort of major pharmaceutical companies such as
Bayer, Bristol-Myers Squibb, Glaxo Wellcome, Aventis, Novartis, P zer, Ro che, SmithKline

212001-2010 has been named the \Malaria Rollback Decade" by th e WHO [WHOO03] to emphasize e orts
being made in limiting the widespread of malaria.

12 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

Beecham, and Zeneca. Interdisciplinary connections of the SNP Consortium include IBM
and Motorola.

The problem with a lot of drug therapies is the possibility of adverse drug reactims by
patients: Research by Lazarou, Pomeranz, and Corey [LPC98] suggests that) 1994, such
reactions were responsible for millions of hospitalizations and almost aundred thousand
deaths. This value is not likely to have improved lately and is hindering the introduction of
new medications that are e ective in most patients but pose unbearable risks: Foexample,
the gquite e ective anticonvulsant drug Lamictal ¢ by Glaxo Wellcome is only reluctantly
prescribed because of a potentially fatal skin rash that arises as a side ect in ve percent
of all patients taking the drug [Maso099]. The problem of the dierent e ects drugs exert
on patients has long been known and studied, already over a hundred years ago Sir Wlin
Osler*? re ected:

\If it were not for the great variability among individuals, medicine might as well
be a science and not an art.” (as cited by [Rose00])

Pharmacogenetics is an area of research that studies how genetic variation in uences a
patients responsiveness and responses to drugs (a good introduction to pharmaeggtics
is, e.g., [Rose00]), thereby trying to give physicians the possibility 6 using objective data
about a patient's likeliness to react to prescribed drugs in a predictive way. The baic idea in
pharmacogenetics is to build apro le of an individual's genetic variations in order to predict

e ectiveness and side-e ects of drugs. As was discussed above|since genetic variation is
mainly due to SNPs|a hope of pharmacogenetics relies on building an accurate map of
SNP haplotypes.

Roughly speaking, the hope is to identify linkage disequilibrium loci around cerain genes
that are susceptible for causing a certain adverse reaction to drugs. The same techypie has
already been applied in the study of individuals' susceptibility to certain complex genett
diseases such as Alzheimer's disease: In an analysis of polymorphisms on #poE gene
locus on chromosome 19, Martinet al. [MartO0Q] reported the detection of those SNPs
in linkage equilibrium that are associated with Alzheimer's disease. A number b other
studies successfully related the susceptibility for complex genetic diseases such as raige
with aura, psoriasis, and insulin-independent diabetes mellitus to certain SNPs inihkage
disequilibrium [Rose00]. Now, just as linkage disequilibria can be relatedd the susceptibility
for diseases, they can also be related to certain drug reactions. Two good exanagl for this
are, e.g., patient's reactions to nortriptyline and beta-2-agonists:

Nortriptyline is a medication against depression which is converted to an inative
compound within the body by drug metabolizing enzymes called the cytochrome P450
enzymes. Speci cally, an enzyme labeled CYP2D6 is a key in inactivating nortryptiine
and removing the inactivated substance from the body|except in some people that
have variations in their CYP2D6 encoding gene. These variations may lead to two
undesired e ects [DeVa94]: People referred to as \ultra metabolizers" have a vagtion
that causes the synthesis of too much CYP2D6 in their body, thus inactivating ®
much nortriptyline that these people are likely to receive insu cient antidepressant
e ects from nortriptyline. A more dangerous variation is found in people referred to
as \poor metabolizers" who do not synthesize su cient amounts of CYP2D6|these

22 0sler, Sir William, Baronet (*1849, y1919). Canadian physician and professor of medicine who pla yed a
key role in the transformation of the curriculum of medical e ducation in the late 19th and early 20th century.

2.3. IMPORTANCE AND PROSPECTS OF SNP MAPPING 13

**

SNP genotype pro le of
patients in clinical trial

medicine e ective? e ective ine ective
I N il
SNP genotype pro le of | L LI LI
e ective vs. ine ective 1 L. | IL
1 i i i L[| I
,,,,,,,,,, -
I J
; Ll L | Ll
predictors for e cacy 1 1] 1
SNP pro le for prediction SNP pro le for prediction
\e ective" \ine ective"

Figure 2.4: Pro ling SNPs in pharmacogenetics: If there is a section of the SNP gergpe
pro le that proves to be di erent in patients where a drug is e ective as opposed to patients
where a drug shows no e cacy or undesired side-e ects, this region can be used to predict the
e ectiveness and potential risks due to side e ects in a patient before a drug is presdboed.

are likely to experience toxic side e ects due to accumulation of nortriptyline in their
body. Genetic testing for variation in the gene for the CYP2D6 enzyme could ava
both scenarios.

Beta-2-antagonists such asalbuterol are important to the treatment of asthma. In-
teracting with the beta-2-adrenergic receptors in the lung, they cause the freeing of
airways by inducing muscle relaxation in the lung muscles. A SNP in the gene encoding
the beta-2-adrenergic receptor causes the carriers of one SNP variant to express fewer
of these receptors, therefore receiving little relief of asthma symptoms upon aandard
dose of albuterol [Ligg97]. Testing for presence of the speci ed SNP in patients can
allow to clearly identify those 45% in the North American population®® who can only
poorly control their asthma by beta-2-antagonists.

It is clear that the prospects of being able to predict the e cacy of a drug whilst minimi zing
the risk of side-e ects is of great interest to the pharmaceutical industry, which coul then|
as Roses proposes in [Rose00]|create e cacy pro les for patients (see Figure 24) already in
phasell ?* clinical trials of medication. Abbreviated SNP pro les ?° could be used to record

23This gure should be similar for Europeans.

24Clinical trials are divided into ve steps: Preclinical Research includes controlled experiments using a
new substance in animals and test tubes and may take several y ears. Phase | trials are rst tests of the
investigated drug on humans. Doses are gradually increased to ensure safety. Phase Il trials will gather
information about the actual e cacy of a drug. Phase Il trials studies a drugs e ects with respect to
gender, age, race, etc. A successful phase Ill trial leads to the admission of a drug to the public market.
Occasionally, phase IV trials are conducted that are|in principle|phase IlI trials on an e ven broader
variety of patients.

14 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

adverse reactions in patients and thus be able to predetect even the most rare adversgents.

Furthermore, the development of new, more e ective drugs can be facilitated: The pardkl
developments of drugs targeting speci c symptoms is facilitated because patienteho do not
respond to a certain medication can be proled in early clinical trial stages. Additionally,

the development of medications which are highly e ective in only a comparably smallpart
of a population (e.g., a medication with 30% response rate) become pro tablas they may
be speci cally prescribed to patients to whom the respective substance will be e ectie.

Pharmacogenetics relying on SNP linkage analysis seems to be a promising dt&r replacing
trial-and-error prescriptions with speci cally targeted medical therapies.

25 Abbreviated SNP proles contain only the SNP information of a patient that is relevan t for a drug
e cacy prediction. The introduction of abbreviated pro le s plays an important role in the discussion about
the fear of \individual DNA pro ling" because they cannot be backwardly related to a patient.

Chapter 3

Computer Science Preliminaries
and Notation

The rst section of this chapter introduces the notation used throughout this work, f ollowed
by a brief introduction to those ideas in computational complexity that are imp ortant to this
work. Especially, the last section focuses on xed-parameter tractability, laying a foundation
for the computational complexity analysis in the following chapters.

3.1 Notation for Matrices and Graphs

Matrices. By an n m matrix A we are referring to a rectangular arrangement ofn m
elements inton rows and m columns. By a; we designate the element inA that may be
found at the j th position of the ith row. We will use the terms A and (a;) synonymously.

Graphs. A graph consists ofvertices and edges where a vertex is an object with a name
and other properties (such as a color) and an edge is the connection of two vertices. aV

will denote a graph G with n vertices and m edges by V;E) where V = fvy;:::;vhg
andE = fep;::1;emg V' V. In this work, only simple, undirected graphs are considered,
meaning

a vertex cannot be connected to itself by an edge,
no two vertices may be connected by more than one edge, and

an edge leading from a vertexu to a vertex w also leads fromw to u.

By the term subgraphG° = (V%EY we are referring to a graph with V® Vv and E® =
E\ (V® V9. GivenasetV% G°=(VEE9) with E®= E\ (V° V9is called the subgraph
induced by V%in G.

A vertex v is said to havedegreed|denoted by degredv) = d|if there are exactly d edges
in G that are adjacent to v.

A pathp of length™ in a graph G = (V; E) is a sequence of +1 distinct vertices vivo:::v-41

in G such that for each 1 i *, v; and vj,; are connected by an edge. Acycle of
length ™ in G is a sequence of verticesviv, :::v-vy in G such that v, :::v is a path in G

15

16 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

and fv-;vig 2 E. We call G = (V;E) a tree if it contains no cycles; a tree containing a
specially designated nod&called the root of the treelis called rooted. Nodes of degree 1 in
arooted tree are called leafs. A graplG = (V;E) is called connectedif any two vertices u; v 2
V are connected by a path inG. A subgraph of G that is maximally connected with respect
to its number of vertices is called aconnected component

A graph G = (V;E) is called bipartite if we can divide the setV of vertices into two
disjoint subsets V; and V. such that E contains neither edges between vertices iV, nor
edges between vertices in/,. The graph G is called planar if it can be embedded into an
(Euclidian) plane without any intersecting edges.

In this work|especially in Chapter 6|we will be using the following set of oper ations on
graphs:

Subgraph removal. Let V© V be a subgraph ofG = (V;E). By GnV°we will
denote the subgraph that is induced inG by V nV°

Vertex deletion. Let u be a vertex in a graphG = (V;E). By G nfug, we denote
the graph that is induced in G by V nfug.

Edge deletion. Let e be an edge in a graphG = (V;E). By G nfeg, we denote the
graph G = (V;E9 with E°= E nfeg.

A vertex separatorin a graph G = (V;E) is asetV V of vertices in G such that GnV is
not connected. IfjVj = k, we call V a vertex separator of orderk. The de nition of an edge
separator E E of order k is analogous.

3.2 Crash Course in Computational Complexity Theory

Generally speaking,\an algorithm is a procedure to accomplish a specic task. Itis the
idea behind any computer program"[Skie98]. The rst goal for any algorithm is to be

e ective, i.e. providing correct solutions to a given problem, however, an e ective algoithm

is of little use if it is not e cient , i.e., requires more resources (especially time) to solve a
problem than can be provided. Computational complexity theory deals with the amount
of resources|the two most important of which are time and memory ?|required to solve

a certain computational problem by an algorithm. A brief introduction to analy zing the
time complexity of algorithms is given in [Skie98], a very thorough treatment of complexity
theory may be found, e.g., in [Papa94]. This section will introduce some basiterminology
from computational complexity theory that will be used throughout this work.

3.2.1 Machine-Independent Analysis

Imagine that we are given an algorithm calledA (in any programming language) that solves
a certain problem P when given an input | , called aninstance of P. We would now like to
analyze the performance|especially concerning speed|of this algorithm. The most obvi ous
way of this would be to run A on a lot of instances ofP and measure the time it takes forA

Lin order to distinguish tree from graphs more easily through out this work, we will use the term \vertex"
for general graphs and the synonymous \node" for vertices in trees.

2Since only the notion of time complexity is important for thi s work, we shall omit space complexity in
the following introduction.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 17

to complete its task each time. However, with this approach, we quickly run nto a multitude
of problems, the most crucial of which are that the absolute time measured is in uenced
by the actual machines computer architecturé, absolute time values are only useful for one
particular type of machine, we can seldomly test the algorithm on all conceivalk# instances,
and a purely practical analysis provides no indication about an algorithm's maxmal (worst-
case running time.

Complexity theory tries to avoid these problems arising from a direct machine aalysis by
analyzing computational problems in a more formal and mathematical way. Thisanalysis
is machine-independent whilst still trying to incorporate the fundamental workings of a
modern computer. Traditionally, complexity theory relies on the Turing Machine as its
model of computation which is, however, a quite abstract model of computation laking
any close relationship to modern computers. For this work, we do not require the many
special features o ered by Turing Machines and shall therefore rely on another model of
computation that is su ciently precise for our analysis, far more intuitiv e and more closely
related to a \real" computer than a Turing Machine. ® This model is the RAM model of
computation, which Skiena [Skie98] describes quite vividly as a computer

\where each “simple' operation (+,-,*,=,IF,call) takes exa ctly 1 time step [and]
loops and subroutines arenot considered simple operations. Instead, they are
the composition of many single-step operations. ... Each meory access takes
exactly one time step, and we have as much memory as we need."

Using this model, the computational time of an algorithm is given by simply counting the
number of time steps it takes the RAM machine to execute it on a given problem instace.
The advantage of the RAM model lies in the fact that it captures the essential behaior of

a modern computer without introducing any ckle parameters such as memory bandwidth,
actual processor speed, and memory access time, just to name a few. The next subsection
demonstrates the usage of this model in the analysis of an algorithm's timeomplexity.
This, however, requires a last step of formalization: Besides the machine modethe term
\problem" needs to be speci ed®

Computational problems may be stated in many ways, the most importantof which|at least

in the context of this work|are decision problems(the output can be just either \ Yes" or
\No") and optimization problems (the output is a solution which is minimal/maximal in
some respect). Most of computational complexity theory solely deals wittdecision problems
because almost any \reasonable" way of stating a problem can be transformeato a decision
problem.” Although a whole branch of theoretical informatics| computability|has evolved
concerning the existence of decision problems that arandecidable(i.e., not algorithmically

3A modern computer's performance is, e.g., in uenced by its p rocessor, memory bandwidth, techniques
such as pipelining and caching, the operating system, the pr ogramming language and its compiler, etc. Due
to these many factors it is sometimes even di cult to obtain ¢ onsistent results on a single, de ned machine.

4There are many reasons why Turing Machines are nevertheless used in computational complexity theory:
For example, requirements such as memory and time are very ea sy to de ne for a Turing Machine and can
be analyzed with great accuracy. Furthermore, Turing Machi nes can simulate other machine models|jone
Turing Machine can, in theory, even simulate an in nite numb er of Turing Machines. The simulation of
an algorithm on the RAM model (which will be introduced short ly) by a Turing Machine requires only
polynomially more time than its execution on directly on the RAM (the term \polynomially more time" will
also be de ned more precisely later on in this chapter).

5A quite thorough analysis of di erent machine models can be f ound in Chapter 2 of [Papa94].

6 An algorithm is by de nition already given in a formal fashio n.

"E.g., instead of asking \What are all prime numbers between 0 and 280581?" we can solve the decision
problems \Is 1 a prime?" (\ No"), \Is 2 a prime?" (\ Yes"), ..., \Is 280580 a prime?" (\ No") separately.

18 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

solvable) by computers, we can assume for this work that we are always gin decidable
decision problems.

Analyzing decision problems is closely related to the fact that in complexity theory a pro-
blem is generally formulated as alanguageL and asking (i.e., deciding by an algorithm)
whether a given instancel is part of that language. Both the languageL and the instancel
are a subset of for an alphabet , where is a nite set of symbolsand is the set of
all words that may be generated by concatenation of symbols from , including the empty
word which contains no symbols at all® Expressing a given problem as a language is|in
most practical cases|quite straightforward. ° For this work, the computational complexity
for solving a problem can be seen as equivalent to the complexity of answering the ico
responding decidability question. It should be noted that stating a problem in form o a
language presents this particular problem in a very abstract form. Neither an algrithm for
solving the problem is given nor any obvious hint about the time complexity of solving this
problem. In order to deal with this, we will introduce the model of complexity classesand
reductions later on in this chapter.

For the sake of simplifying the discussion in this work, we will refrainfrom stating problems

in the form of a language. Instead, we will simply assume that the given problerm may be

stated in the form of a language. Furthermore, instead of asking whether an instacel is

in L, we shall directly deal the objectx that | represents (such as a word, number, graph,
etc.)?. We then call x an instance of the problemP =\12L ?"

3.2.2 Running Time|Keeping Score

We discussed at the beginning of the last subsection that, given an algorithm foa problemP,
knowing how this algorithm performs on certain instancesx of P is of little use. Rather,
in order to understand the quality of an algorithm, it is vital to know how it performs on
any conceivable instancex of P and express this performance in an intuitive way. This
is done by introducing three new ideas: Analyzing how the running time of algorithms
scaleswith the problem size, distinguishing betweenworst, bestand average-case complexity
(emphasizing on worst-case complexity), and analyzing the scaling of the algdhim in its
asymptotic behavior

The rst idea is based on the intuitive observation that an algorithm should generally take
longer time to run as the presented instance becomes larger. For instance, a graph finlem
on a general! graph consisting of ten vertices should be easier to solve than the same
problem for a general graph with a thousand vertices. Therefore, i is an instance of a
problem P, the running time t of an algorithm is expressed as a mathematicafunction f

8For example, if = f0;1g, = f ; 0;1;00;01; 10; 11; 000; 001; 010; 011; ::: g.

9E.g., the problem of deciding whether a given number is a prim e number would have to be expressed
as Lpime = fp 2 f0;1g j pis the binary representation of a prime number g (with = f0;1g) and then
asking \given | 2 ,iST2L prime ?"

10\we shall assume for this work that such a representation, i.e , the encoding of x as | is always a valid
one, meaning we do not need to worry about any cases where | does not encode a valid object x.

11By \general" we mean that the given graph has no special proper ties that greatly simplify the solution
of the respective problem.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 19

¢ g c2 9(x)
(0
(0
| f :
| . /e o) /G g0
XLO X XLO X XA‘O X
(0= O(gi) f00= (g0 f00= (900)

Figure 3.1: A function f (x) and its bounds in O-notation: From left to right, g(x) is an
upper, lower and tight bound on f (x). Note how the respective bounding property ofg only
needs to be true for allx > x °.

of n := jxj, the size ofx:'?
taigorithm (X) = f (jxj) = f(n)

Given a xed size n for the input instance x and an algorithm A that runs with x as an
input, we distinguish between the best-case average-caseand worst-caserunning time:

ta (X)
X 1jxj=n

thest(A;N) = ijixr;:ntA (X); tayg(A;n)= ; and tworst (A;N) = ijax>j<:ntA (X):

ifx jixj= ngj’
Most of the time, only the worst-case complexity of an algorithm is intereging since average-
case and|especially|best-case complexity provide no information whatsoever about the

running time that A might have when presented with any instancex. E.g., for average-
time complexity the problem here lies in the de nition of \average": There may be some
problems which are rather easy to solve on many instances, but this is of no use Vfe
should|consciously or not|be dealing just with hard instances during the application oft he
algorithm. 13 Albeit open to criticism about being too pessimistic, the worst-case compleity

of an algorithm seems to be the most useful measure for its performance.

The computational RAM model introduced in the last subsection provided a way to measire
the running time of a given algorithm A exact to a single time unit. This degree of accuracy
is not useful as for such exact counts the functiorf that measures the running time of A will
often get very complicated and unintuitive to analyze.l* Moreover, as we are interested in
the performance of an algorithm on a real-world machine and not on the hypdietical RAM,
measuring the running time of A down to the last time unit nds no application. Therefore,

12| ater on, we will analyze algorithms in more detail using var ious parameters of the input. For example,
the running time of a graph algorithm may depend on the number of edges as well as on the number of
vertices in the graph. The number of edges in the graph is lowe r than jVj2, but explicitly using the number
of edges provides a better analysis. In order to simplify the discussion, however, we will for now assume that
there is just a single input size parameter given.

13Moreover, the corresponding mathematical analysis of aver age-case complexity even for simple algo-
rithms and a clear de nition of \average case" is often highl y involved and complicated.

14 Moreover, there are often trivial steps depending on the not ation of the algorithm (such as initialization
of variables) that require just a little constant amount of t ime and are thus not interesting for a general
performance-analysis.

20 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

computational complexity theory, instead of directly analyzing f , rather analyzes the upper
and lower bounds off using the O-Notation (pronounced \Big Oh Notation"):

De nition 3.1 (O-Notation):
Given two functionsf :R.g! Rspandg:R.o! Rso. We will say that

f = O(g) if there exist a constantc 2 R and anx°2 R such that for all x > x , f (x)
¢ g(x) (gis an upper bound for f).

f = (g) if there exist a constantc 2 R and anx°2 R such that for all x > x f (x)
¢ g(x) (gis a lower bound for f).

f = (g) if there exist two constantsc;;c, 2 R with ¢; ¢, and anx®2 R such that
forall x>x%c; g(x) f(x) ¢ g(x)(gis a tight bound for f).

This notation is illustrated by Figure 3.1.%°

Analogously to preferring the worst-case complexity over the best- and average-sa com-
plexities when analyzing the performance of an algorithm, it is common practiceo provide
an upper bound for an algorithm's running time instead of a lower or tight onel6

To provide an example on how to determine the running time of an algorithm and expres it
in O-Notation, we will now analyze an algorithm for a well-known problem in computational
complexity, called Vertex Cover

De nition 3.2 (Vertex Cover)

Input: A graph G = (V;E) and a parameterk.

Question: Is it possible to choose a se¥® V with jVY k such that every edge irE has
at least one endpoint inV%?

In Figure 3.2, a graph and one of its vertex covers is given in order to illugtate this de nition.

A very trivial algorithm Avcuiviaa for this would be to simply try all possible solutions of
sizek and see whether one of these hypothetical solutions is indeed a vertex cover for the
given graph:

Algorithm: Trivial algorithm Avcuiviaa for Vertex Cover

Output: \Yes" if G has a vertex cover of siz&k, \ No" otherwise

01 for every k-sized subsetv®of V do
02 if VOis a vertex cover forG

03 return \Yes"

04 return \No"

15For a concrete example, consider the function f(x)= x*+ x2+ x Inx+1234. If x 6, we have

2 2

f(x)= x*+x%2+x Inx+1234 <x*+x2+x Inx+6%<5 x*=5 g(x);

f(x)= x*+x?+x Inx+1234>x*>1 x3=11 g(x); and

1 gx)=1 x*<fx)=x*+x? Inx+1234 <5 x*=5 g(x)
and therefore f (x) = O(x%), f (x)= (x3),and f(x)= (x%).
16This is mainly due to the fact that tight bounds on the running time of algorithms are often neither
intuitive nor easy to grasp mathematically.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 21

>
<

ertex Cover for G

Agraph G=(VE
grap () (black vertices)

Figure 3.2: A graph G = (V;E) and a vertex cover of size 17 (black vertices) foiG. Note
how for each edge inG, at least one of its endpoints is in the given vertex cover. The shown
vertex cover for G is optimal in the sense that there is no vertex cover forG with fewer than
17 vertices (this was veri ed using a computer program).

We will now analyze the running time of Ay cuiviar in terms of the number of vertices (V)
and the number of edges jEj) in G.1” Let us start with lines 03 and 04: Since both
terminate Avcriviai , they are executed at most once, and thus do not play a role in the
asymptotic running time of Avcuiviai - Line 02 can be executed by calling the following
subroutine: Iterate over all edges ofG, and check for every edge whether at least one of its
endpoints is in V° If we have been clever enough and marked those vertices that are °
during the execution of line 01, executing this line only requiresO(jEj) running time. For the
seemingly most di cult line to analyze, line 01, we make use of the machine-independency
of our analysis by using an algorithm for generating subsets from the extensivavailable
literature on algorithms (e.g., [CLRS01], [Knut97]).18 In [Knut03], we can nd an algorithm
that generates allk-sized subsetsv® of V in

0 1

= 0 vi (Vi 1, (Vi k+1)K = oGV}

k factors

Vi Vi

OC W)= 0 Vi w

time on a RAM-like machine. For nding the total running time of Avycyiviar , it is now
su cient to observe that line 01 causes line2 to be executed once for each of the at mosﬂ\lﬁJ
subsets generated. Taking into account the time requirements of lin@2, the total running

17 A quick glance at the algorithm demonstrates the advantage o f all the conventions we have introduced
above. E.g., if we were not to use the O-Notation for the worst-case bound we are about to determine , we
would explicitly have to look at the exact number of steps a RA M needs to generate a subset in line 01, to
store G, to determine whether VCis a vertex cover of G, and so on.

18Note that the RAM models in literature do not necessarily nee d to be de ned precisely the way we
have. E.g., in the RAM model used in [Knut97], some computing steps take more than one unit of time.
However, this is not important for the performance of an algo rithm in O-notation: Assume, for example,
that each simple computational operation would consume fou r time units instead of one on a machine RAM 0
as opposed to our RAM model. If there is an algorithm that, e.g ., requires O(n?3) time on the RAM, it
would require O((4n)3) = O(64n3) = O(n3) time on the RAM 0.

22 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

time for Avcrivia 1S therefore bounded by
O@Vi* JEj):

This upper bound is quite unsatisfactory for practical applications, for it impl ies an enormous
worst-case running time even for small graphs and smak.® Note that from the discussion
so far, it is not clear wether this is due to a poorly designed algorithm we have aqoe up with
or it is a result of some \inherent complexity" of Vertex Cover . The next subsection and
the following section will demonstrate that actually both is true, that is, Vertex Cover

is believed to be \hard to solve" (we will de ne this more precisely in the next subsecion)
but there are ways of \taming" this inherent complexity, as will be shown in Section 3.3.

3.2.3 Complexity Classes

In the previous subsection, we have given an algorithm to solv&/ertex Cover that was
quite impractical for large input graphs. However, it was not clear whether this prablem is
hard to solve in general or if we just haven't come up with a good algorithm. We would
now like to know wether there is a better algorithm for Vertex Cover than the one
presented, or|leven better|know the fastest possible algorithm for Vertex Cover (i.e.,
the minimum time complexity of Vertex Cover). The rst request is comparablyeasy to
come by, we just have to look for an algorithm with a better worst-case unning time than
the one presented. The latter however is a lot harder to deal with, because in nding dower
boundfor the time complexity of Vertex Cover it is necessary to considerevery thinkable
algorithm for Vertex Cover |even algorithms that have not yet been found. 2° However,
there is another way to approach the problem of complexity bounds usingeductions and
complexity classes

Reductions will allow us to divide problems into di erent \classes of di culty". T he idea
behind this is the following: Although not knowing how hard an individual problem mi ght
be, we can relate problems to each other so that we know they are both \equally ha" to
solve, meaning if there is a fast algorithm for one problem, there must be one fahe other
problem, too. A collection of such related problems is called aomplexity class(a more
formal de nition will follow shortly). Problems are grouped together in co mplexity classes
by nding a computationally \cheap" 2! transformation between instances of one problem
and the other. Then, loosely speaking, if we know that if one of the two problems tuns out
to be easy to solve, we also know that the second problem is easy to solve, becauge can
apply the algorithm for the easy problem to transformed instances of the other one. rl a
more formal fashion:

De nition 3.3 (Polynomial Time Reduction):

Given two languaged. ; , and Ly 5. We call L , polynomial-time reducible
to L, > (designatedL: poy L2) if there is a function R from , to , that can be
computed in polynomial time on anyx 2 ,; and

x2Li1,R (X)2L3:

19For example, nding out if a graph with 75 vertices and 200 edg es has a vertex cover of size 10 would
require ¢ 10?1 steps on our RAM where c is some constant 1 omitted on the O-notation.

20Except for a few very rare cases of problems (such as sorting) , the question of lower complexity bounds
therefore generally remains unanswered.

2Ln our context, this will imply a polynomial running time wit h respect to the original instance's size.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 23

In complexity theory, there are a lot of more specialized reductions, some of wbh we will
get to know in Section 3.3, that are more \delicate" in the sense that they imposestricter
requirements onR than just being computable in polynomial time. However, we shall work
just with polynomial time reductions for the rest of this section.

The concept of polynomial time reduction may be used to build a hierarchy of computaional

problems. This hierarchy consists of classe8. In each class, we can nd those problems that
are solvable using the resources allowed by the respective class. Furthermoregwntroduce

the concept of completenessto identify those problems in a class that are computationally
as hard to solve as any other problem in that class. In this way, if a problem hat is complete
for a class should prove to be \easy" to solve, we know the same to be trueof all other

problems that are in C.

De nition 3.4 (Complexity Class Hardness and Completeness):
Let C be a complexity class. A languagé. is called Chard if all languages in C can be
reduced in polynomial time toL. We call L C-complete, if L is CG-hard and in C.

There is a vast number of complexity classes known today (see, for example, [Aa®3]), each
of them grouping together problems with various properties. Two of the rst classes that
were developed and are of much interest for this work aré® and NP.

De nition 3.5 (P and NP):

The complexity classP is the class of computational problems that can be solved irolyno-
mial time on a deterministic Turing Machine.

The complexity classNP is the class of computational problems that can be solved iroly-
nomial time on a nondeterministic Turing Machine.

Although our de nition uses the term \polynomial" to describe all problems in NP, it

is widely believed that all NP-complete problems are only solvable in exponential time.
The reason for this is the computational model underlying the de nition: A nondetermin-

istic Turing Machine is a very unrealistic model of computation, being able to|va guely

speaking|correctly \guess" the solution to a problem and then only needing to verify it s

correctness (the process of checking must then be done in polynomial time). Howevesll

computers known today are deterministic, and therefore they have to \emulate" the guesig

steps of the nondeterministic Turing Machine in order to nd a solution to an NP-complete
problem. This emulation is done by simply checking all possibilities for a pssible solution
which takes|in worst-case complexitylan exponential amount of time.

It must be stressed that no proof whatsoeverhas been given that problems inNP are at
best solvable in exponential time. All we have stated is a plausibility agument: There are
thousands of problems known to beNP-complete (even the rather outdated list of [GaJo79]
lists hundreds of NP-complete problems), nding a polynomial time algorithm for just one
NP-complete problem would show thatall NP-complete problems are polynomially solvable,
but this has not happened in spite of over 25 years of research so far. There are theoeé¢
two important things to be remembered throughout this work:

When saying that a problem is harder than another one, we are always referring to
relative complexity bounds, i.e., we are saying that if a \harder" problem should turn
out to be e ciently solvable, so will the easier problem (but not vice-versa).

24 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

Sometimes we will use an argument such as \. . . [since this would imply that P = NP"
in our proofs, which is based on the unlikeliness oP = NP. It would, however, be
more correct|albeit unusual|to write \Unless P = NP, the following holds true:

The Vertex Cover problem posed at the beginning of the previous subsection has been
proven to be NP-complete in [GaJo79], where it is shown thatVertex Cover is evenNP-
complete for planar graphs where each vertex has a degree of at most?3 A long time, an
NP-completeness proof for a problem was taken as a synonym for \unsolvable alreadpif
moderate input sizes" (coining the term \intractable"). However, this is not true i n general,
as the next section demonstrates.

3.3 Fixed-Parameter Tractability (FPT)

We have seen in the previous section how algorithms can be analyzed machine-independently
by observing how they scale with the size of their respective input. This size we nameal. We
have also seen the clashlP, reasoning that problems complete for this class most probably
have a worst-case running time that is exponential, i.e., anNP-complete problem can only
be solved in

(a")
time for somea > 1. Since this usually implies unreasonably high running times for largen,
problems that are NP-hard are also referred to as beingntractable. We have also stated
in the last section|citing from [GaJo79]|that the problem Vertex Cover (see De ni-
tion 3.2) is NP-complete. The NP-completeness oVertex Cover implies that it is most
probably only solvable in O(a") time where n is the size of the input instance anda is some
constant. However, this de nition provides us with two loopholes:

We have made no statement about the size o&. A small a could lead to algorithms
that are fast enough even for a fairly largen.

We have made no good use of the fact that|besides the size of the input graph|any
instance ofVertex Cover contains a parameterk that might be restricted to a small
value. What if we could restrict the exponential complexity of Vertex Cover to the
parameter k which is given along with the input graph according to De nition 3.2 ?

It might seem at rst that observing these two \loopholes" is just splitting hai rs in an

imprecise de nition, but in this section, we shall use exactly them to develop a more e cient

algorithm for Vertex Cover than the trivial O(jVj¥ jEj) algorithm used as an example
for complexity analysis in the last section. After that, a short introductio n to parameterized
complexity theory is given.

3.3.1 An E cient Algorithm for Vertex Cover

At the end of this section, we will have improved the O(jVj¥ jEj) algorithm for Vertex
Cover given in the previous section to anO(2% jEj) algorithm. The strategy for this will
be quite straightforward.

22Recall the de nitions of "planar" and \degree" from Section 3.1.

3.3. FIXED-PARAMETER TRACTABILITY (FPT) 25

Recall De nition 3.2. If a given graph G has a vertex cover of siz&, then we can choose
vertices in G such that every edgein G includes at least one vertex from the cover This
means, if we were to search for a vertex covey° for G we can simply pick any edgee =
fva;vpg in G, and then, knowing that either v, or v, must be in the vertex cover, consider
two distinct cases for V% Either V2 contains v, or V° contains v,. For each of these cases,
we would then look at the uncovered edges, pick one, and again consider the two cases for
putting a vertex of that edge into V°(the common term for this is to branch into those two
cases). Thisrecursive algorithm leads to a tree-like structure searching for vertex covers of
sizek for G|depicted in Figure 3.3|that is commonly referred to as a search tree Note
that for each level down the search tree, we have one vertex less left to form a wex cover
for G. If we cannot nd a vertex cover for G in the kth level of the search tree, then, as we
have tried all possibilities of a vertex cover forG, G has no vertex cover of size.

The described algorithm can be rewritten in a more formal fashion:
Algorithm: search tree algorithmAe. for Vertex Cover

Output: \Yes" if G has a vertex cover of size&k, \ No" otherwise
o1 if G contains no edgeghen

02 return \Yes"
03 if G contains edges andk =0 then
04 return \No"

05 pick an edgee = fvy; vpg from G

06 V2 Vnfvag

07 EY Enfe2E jv,is an endpoint of eg

08 if Apee with G0 :=(VZEQ) and k 1 as inputs returns \Yes" then
09 return \Yes"

10 VP Vnfyug

11 E Enfe2Ejvisan endpoint of eg

12 if Agee with GY:=(VZEQ and k 1 as inputs returns \Yes" then
13 return \Yes"

14 return \No"

This algorithm is illustrated in Figure 3.3. So what is the running time of t his algorithm?
Without the recursion (i.e., calling Ayee as a subprocedure),Ayee Would require O(JEj)
time to generate G2 and G2, since each edge must be looked at to see if it is adjacent e,
or vy, respectively (we shall assume that deleting a vertex fronG takes constant time). The
algorithm Ayee calls Ayee (with a di erent input, especially, k is decreased by one) at most
two times. Each of those calls again callsAye at most two times, and so on, until the
algorithm is called with k = 0. This means, in a worst-case analysisAyee is called

I |k{2}2 2 1 =2

initial k k1 k k+1 k k=0

times. Each call itself takes|as mentioned above| O(JEj) time which means in total, A e
requires at most

O(2"|Ej)
time to solve a given instance G; k) of Vertex Cover , a fairly large improvement compared
to the trivial algorithm proposed in the last section, and moreover, the exponential part in
the running time of Ay is independent of the size ofG. This makes Vertex Cover a

26 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

initial k

Figure 3.3: The search tree for nding a vertex cover of sizek for a given graph: Given
the graph G and a parameter k > 3, the above gure demonstrates how a search tree
algorithm would try to nd a vertex cover of size k for G. In each node of the search tree,
an edgee = fu;vg that is not yet covered is chosen fromG (designated by coloring the
adjacent vertices ofe grey) and the algorithm branches into two cases: Either,u is in the
vertex cover orv. The respective vertex from G is chosen into the vertex cover (and can
then, along with its adjacent edges which are now covered, be removed fro@), k decreased,
and the algorithm proceeds if no vertex cover forG has been found yet and we have not yet
chosenk vertices into the cover.

xed-parameter tractable problem, because, as long ak is constant, the time required to
solveVertex Cover on (G; k) using Ayee is polynomial (for Vertex Cover , even linear)
with respect to the size of the input graph G.

Note that Ayee is not the optimal xed-parameter algorithm for Vertex Cover known to-
day. In [CKJO1] and [NiR0o03y], O(1:29¢)-algorithms for solving Vertex Cover are given.
This is done by optimizing the search tree: Instead of branching into two subcasesmal
decreasingk by one each time the algorithm is called recursively, the algorithm may brant
into more complex cases, allowing it to decreas& by more than 1 in some branches of
the tree. Using the mathematical tool of recursion analysis it can be analyzed how these
complex cases decrease the base of the exponent in the algorithm. It should furthermeor
be noted that the algorithm uses the technique ofproblem kernel reductiorf® on Vertex

23Kernel reductions are based on the idea that using the parame ter k, we can already decide for some
parts of the input instance how they will add to the solution o f the problem. A problem kernel reduction
causes the input instance to be smaller than f (k) for some f whilst being computable in polynomial time.

3.3. FIXED-PARAMETER TRACTABILITY (FPT) 27

Cover : Loosely speaking, for some vertices in a given grapks, one can, given the pa-
rameter k, determine that they necessarily have to be in a vertex cover of siz&|should
one existffor G and, before recursing, already choose these vertices into the vertex cover,
decreasingk. A third technique called interleaving rst introduced in [NiRo0O] also applies
problem kernel reduction during the recursion to decreasé even more in various branches
of the search tree.

Unfortunately, the concept of xed-parameter tractability is believed to be only applica ble
to a portion of NP-complete problems, which we will point out in the next subsection, after
introducing some formalisms of xed-parameter tractability.

3.3.2 Formal De nition and Aspects of FPT

It is obvious that restricting the exponential complexity of an NP-complete problem to a
parameter k can only be done for those problems wherk is given?* We call such a problem
where a parameterk is given aparameterized problem

De nition 3.6 (Parameterized Problem):
A parameterized problemis a languageL N. For every (x;k) 2 L, we call k the
parameter.

As we have already mentioned several times, we want to \restrict the complexi" of a
problem P in order for the \hard part of P" to be only dependent on k. In the context
of parameterized complexity this means that we want to have an algorithm for aproblem
whose running time grows no more than polynomially® with the input size jxj.

De nition 3.7 (Fixed-Parameter Tractability):
A parameterized problemL is called xed-parameter tractable if there exists an algorithm
that solves the decision problenP =\(x;k) 2 L ?in

f (k) jxj°®

time wheref (k) is an arbitrary function solely dependent onk.

When introducing the complexity class NP, a polynomial time reduction was used for reduc-
ing problems to each other in order to show their relative hardness to each other. Redahat
we were not able to make anyabsolutestatement about the time resources that (determin-
istic) algorithms require for solving NP-complete problems; instead we just showed that if
one NP-complete problem is solvable in polynomial time, so are alNP-complete problems.
Analogously, we are now seeking for a reduction that allows for relative complexity state-
ments such as \if problem L; is xed-parameter tractable, so is problem L,". We would
therefore like to nd a reduction from an instance (x; k) of one parameterized problem to
another parameterized problem that preserves some properties concerning the parameter;

It can be shown that for every xed-parameter tractable prob lem, there exists a kernel reduction [DoFe99].

241t should be noted that the applications of parameterized co mplexity are not restricted in any way to NP
or any other complexity class. However, since this work will solely deal with xed-parameter tractability in
the context of NP -complete problems, we will sometimes restrict our discuss ion to such problems for reasons
of simpli cation.

25 Although higher degree polynomials such as jxj1°%° would cause an impractically high running time, the
term \polynomial" is often used synonymously with \e cient " because empirically, almost every polynomi-
ally solvable problem has shown to be solvable in O(n?3) time or faster.

28 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

i.e., if the reduction is to make statements about the xed-parameter tractability depending
on the xed-parameter tractability of the problem we perform the reduction from, it is clear
that besides being computable in polynomial time with respect to the input size, thisre-
duction must also keep the parameter of the instance yielded by the reduction independent
from the size ofx.

De nition 3.8 (Parameterized Reduction):
A parameterized problemL ;N is said to be xed-parameter reducible to another
parameterized problemL , N if there exist computable functions :N! N;k 7! k°
and : ; N! ,;(xk) 7! x%such that

1. for some functionf, is computable in timef (k) jxj°®, and

2. (x;k)2L1, (x%k92L.,.
If L, is xed-parameter reducible to L, we write L1 L.

Using this reduction, Downey and Fellows developed a theory of computational complexjt
classes for classifying parameterized problems in [DoFe99], thereby introducintye classes

FPT and W[1], W[2], ..., W[P]

where
FPT WI[1] W][2] WIP]

and P is some polynomial. Analogous to the P=NP" problem, there is no proof whether
these inclusions are strict or there is ani 1 for which FPT=W[i]. For the purposes of
this work, it will be su cient to know that it is widely believed that FPT 6 W[1] and that
problems in the W-classes|as opposed to those inFPT |are not xed-parameter tractable
(e.g., [ADF95] and [CaJu01] provide some strong indications to this). Agin, as in the case
with NP-complete problems, the xed-parameterintractability of W][1]-complete problems
has not been proven but is extremely likely to be true due to some consequences that would
arise if this were not the case.

The above de nition of a parameterized reduction|which closely follows the one given in
[DoFe99]|may not be useful for practical applications. The reason for this is t hat k° may
be impractically large compared tok, and may have high demands in computational time.
For example, the de nition would technically allow for

10k k
K°= 101" and f (k) jxj°® = kK" jxj°®:

This might still be interesting from a theorist's point of view as it do es not contradict
the fact that even using these values fork® and the computational time of means that

if L, is xed-parameter tractable, so is L,. But bearing in mind that we introduced the

whole concept of xed-parameter tractability with the goal of developing e cient algor ithms
for hard problems, the de nition of a parameterized reduction clearly needs re nement.
We would rather desire a reduction that tells us that if L, is xed-parameter tractable
and can therefore be dealt with by ane cient algorithm, the same holds true for L.
Using \computable in polynomial time" synonymous for \e cient" (as was al ready explained
above), we arrive at the following de nition:

3.3. FIXED-PARAMETER TRACTABILITY (FPT) 29

De nition 3.9 (Parameter-Preserving Reduction):
Let L, and L, be parameterized problems. We call ; parameter-preserving reducibleto L,
if there is a parameterized reduction fromL; to L, that

1. is computable in timek®® jxj°@® and

2. preserves the parametek, that is k = k°

If L, is parameter-preserving reducible toL,, we write L1 g L.

De nition 3.10 (Parameter-Equivalence):
Let L; and L, be parameterized problems. We will calL; and L, parameter-equivalent
if Ly ig L2 and Lo, iq L.

Parameter-equivalence between problems expresses a strong linkage that easily altothe
transfer of approximation and exact (xed-parameter) results from one problem to its
parameter-equivalents. We will use this de nition to show some close links beteen two
problems calledRow Deletion and d-Hitting Set in the next chapter.

Concluding this chapter, it should be noted that parameterized complexity is an ongoing
eld of research with still many open problems to explore| \it will need many people to join
this xed-parameter track." [Nied02]

30 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

Chapter 4

Submatrix Removal Problems

Motivated by the problems analyzed in the next chapter, this chapter analyzes the compu-
tational complexity of the following problem called Row Deletion (B): Given a matrix A,
avoid any permutation of a small matrix B (called the \forbidden submatrix") to occur
in A by removing the smallest possible number of rows fromA. This problem will play
an important role in the next chapter, where it will be shown that the construction of a
so-calledperfect phylogeny(a model of evolutionary development) can only be constructed
for a set of species if a matrix representing the species' characters avoids the indimh of
the matrix \" 1.

In this chapter, we demonstrate a very close linkage betweemRow Deletion (B) and a
problem called d-Hitting Set (to be de ned in Section 4.1). Section 4.2 shows that all
occurrences of a given forbidden submatrix in a larger matrix can be found in polynmial
time, leading to a direct reduction from Row Deletion (B) to d-Hitting Set whered is
determined solely byB. Section 4.3 analyzes the converse reduction from-Hitting Set to
Row Deletion (B) in order to determine a lower computational complexity bound for Row
Deletion (B), characterizing a set of forbidden submatrices for whichRow Deletion (B)

is NP-complete (see overview of results in Subsection 4.3.1). Some ideas for extending the
framework of Section 4.3 conclude this chapter in Section 4.4.

4.1 De nitions and Terminology

The problems in this chapter will consider nite matrices with entries from a nite a I-
phabet A. W.l.o.g., we consider all matrices in this chapter to contain entries fromthe
alphabet A = f0;:::;° 1g.2 We shall call such a matrix “-ary. A matrix A will be referred
to as a permutation of a matrix A° when A and A° are have the same size and\ can be
transformed into A° by a (nite) series of row- and column-swappings. This allows for the
following de nition:

De nition 4.1 (Induction of B, B-Freeness):
Let A be ann m matrix and B be anr smatrixwith 1 r nandl s m. We

. 11 . . . -
1The naming for := (1)(1) is explained in more detail in the next chapter.
2\We assume " > 1, since the problem would otherwise be trivial.

31

32 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

will say that A inducesB if A contains r rows and s columns such that the corresponding
submatrix of A is a permutation of B. We refer to A as beingB -freeif A does not induceB.

With this terminology a formal de nition of the general Submatrix Occurrence problem
is obtained.

De nition 4.2 (Submatrix Occurrence Problem)
Input: An . n mmatrix Aandanr smatrix B(1 r nand1l s m).
Question: Does A induce B?

Removing data from a matrix A in order to avoid the induction of B may be done in three
ways: By deleting rows, columns, or both fromA. Removing rows from a matrix A so that
it becomesB -free leads to the de nition of the following problem:3

De nition 4.3 (Row Deletion(B) Problem)

Input: An matrix A and a parameter k.

Question: Is it possible to delete at mostk rows in A such that the resulting matrix does
not induce B?

This chapter will not explicitly analyze reductions and parameterized relationships fa the

analogously de nable Column Deletion (B) problem since all results that we obtain for
Row Deletion (B) are easily transferred to Column Deletion (B) due to reasons of
symmetry.

Allowing for both row and column deletion in a matrix A to avoid a forbidden submatrix B is
also not considered due to the application in Chapter 5 for which the results from ths chapter
are developed: In Chapter 5, it will be shown that being able to construct a tree depictig
the evolutionary relationship of species depends on avoiding the forbidden submatrix \
(for more details, see De nition 5.5) mentioned on page 31 in a matrixA that represents
some biological properties of the species. Removing rows frof will correspond to removing
species, removing columns will correspond to removing characteristics. In orddp be able
to construct such a tree, allowing both row- and column-deletion (\Row and Column
Deletion (B)") seems to be too powerful if the results are supposed to have a biological
meaning. For example, consider the matrices

0 0
and A%:= %

where A% is obtained from A by deleting the rst row and last column. Note that A° does
not induce whilst A does so many times. If we were trying to delete just rows fromA
in order to make this matrix -free, we would see that at least seven rows (e.qg, all those
that contain a 1 in the last column) are necessary to achieve this. Analogouslyfor Column

=
=

>
1
[olelelolelolelelelal gl ol
[ololololololole] ol Jelo]
[olelelololel il Helelele]
OOO0OORRFROOOOOOr
(ol Helolololelelele]
PROOOOO0OO0O0O00O0Or
ORORORORORORrE
[eolololololololelole]
[eolelelolololelely Hele)
[eolelelololel Jeolelale)
[eolelole]l g jolololelele)
(ool Helololololelole)
PRPOOOO0O0O0O0O00O

3A variant to the forbidden submatrix problems presented and analyzed in this chapter is discussed in
detail in [KRW95]. In [KRW95], the problem is to avoid a xed permutation of the forbidden submatrix B
to be induced in a larger matrix A by permuting the rows of A. This problem is proven to be NP-complete
in general.

4.1. DEFINITIONS AND TERMINOLOGY 33

s SUE 5 \non-encoding part"
—_— et e W
03] v W ||
permutation } ! VW
r B ! l
p00dil U 3 U

2A, 6%/ \encoding part"”

Figure 4.1. General scheme for the -decomposition of a matrix B over the alphabetA.

Deletion (B), we would require the deletion of at least ve columns fromA. As we can see
from this example, allowing freely for the deletion of rows and columns in a matix might
produce very \cheap" solutions (in terms of the total number of rows and columns deleéd)
and thus force the data to t the evolutionary model proposed although it originally does
not comply with this model at all. Iffto compensate for this \data force- tting" e ect|
we were to explicitly restrict the number of deletable rows and columns individually the
problem probably becomes harder: Consider, for example, the forbidden submatrii := (1)
over a binary alphabet. Row Deletion (B) and Column Deletion (B) are easily solvable
in polynomial time|simply remove all rows (or columns, respectively) that contain a 1.
However, allowing for both column- and row-deletion where each the number of deletde
rows and columns is restricted individually is already NP-complete (this problem, known as
Constraint Bipartite Vertex Cover , is treated, e.g., in [FeNiO1]).

The main results of this chapter are obtained by showing a close linkage betweeRow
Deletion (B) and the d-Hitting Set problem

De nition 4.4 (d-Hitting Set Problem):

Input: A collection C of subsets of sizal of a nite set S and an integerk.

Question: Is there a subsetS® S with jS§ k that contains at least one element from
each subset inC?

Already for d = 2, d-Hitting Set is NP-complete [DoFe99]. It is obvious that for a givend,
d-Hitting Set can be solved by a search algorithm where the search tree has si2éd¥). In
[NiR00O], techniques using successive problem kernel reductions when traversing the searc
tree (called \interleaving") are introduced. These may be applied to obtain an dgorithm
with O(dX + n) running time for d-Hitting Set , which is thus xed-parameter tractable.
The best algorithm for the general d-Hitting Set problem known has a worst-time com-
plexity of O((d 1+ O(d 1))* + n) [NiRo03,]; for 2-Hitting Set and 3-Hitting Set
there exist even better algorithms that will be introduced later in this work.

The proofs presented in Section 4.3 will all rely on a special decomposition d@fie forbidden
submatrix B, which we will call a -decomposition illustrated in Figure 4.1 and formally
stated in the following de nition:

De nition 4.5 (-decomposition)

Given an “-ary r s matrix B = (b) over the alphabetA. A permutation B of B is called
a -decompositionof B if there exists a 2 A and there existr®r%s% s®with r0+ %=
r;s%+ s%= s such that

34 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

1. r%> 0ands®> 0,
2.81 i r%1 j % by 8 (call this upper left submatrix V) and
3. 8r%i 1 j s% b=

The upper right r® s%submatrix (bj)1 | rososj s Of B is calledW, the lower right r% s
submatrix (bj)ro<i rsoq s is referred to as U.

The left part (bj)1 i 1 j so of B (the one containing V) is called the encoding part
of B . The right part (j)1 i rsoj s Of B (the one consisting of W and U) is called the
non-encoding partof B .

Note that for the rest of this chapter, we will often use the namesV, W, and U for a -
decomposition of B in accordance with this de nition.

A -decomposition ofB can easily be generated in polynomial time by choosing a symbol
from the alphabet A and a columncin B. Then, the rows in B are permuted such that all

's in ¢ are moved to the bottom of B. Then, cis swapped with the rst column of B. For
example, consider the matrix

290702
B:= 210581
. 290701
021179
for which we now generate a -decomposition using 7 as and the 4th column asc:
290702 210581 521081
210581 Pefmgge rows 021179 Swapzf)o'“mns 102179 =- B
290701 290702 729002 '
021179 290701 729001

In this decomposition of B we have (according to De nition 4.5)
V=(3): W=(§3975); andU=(3588%):

Note that in the following hardness proofs of Section 4.3, the lower relativdhardness bound of
Row Deletion (B) will mainly depend on the height of V. For some of the following proofs,
we are therefore seeking to maximize the height of/ [we therefore de ne the maximal -
Decomposition of B:

De nition 4.6 (Maximal -Decomposition)

A -Decomposition B of B is called maximal if there exists no °2 A such that there is
a %Decomposition B o of B, whereV in B o is higher than in B . We denote a maximal
decomposition byB _max -

10110
As an example, a maximal decomposition of the matrixB = 91911 would be
01001
11010
B — 10101
-max 11110
00101

with =0 where V = i has height 3.

Finding a maximal decomposition for a givenB only requires a little more e ort than nding
any decomposition: We simply iterate over all” symbols of the alphabetA of B and record
for each symbol how many times appears in each columrc of B, searching for a that
appears least frequently in one column oB. Putting this in an algorithmic form:

4.2. A REDUCTION TO D-HITTING SET 35

Algorithm: Finding a maximal -Decomposition
Input: An “-ary r s matrix B
Output: A maximal -Decomposition of B

01 n 1

02 max 0

02 Cmax 0

03 for 0:::7 1do

04 for each columncin B do

05 if appearsn®<n times in ¢ then
06 n n°

07 max

08 Cmax c

09 permute B so that all a4 'S in Cnax are at the bottom of Cyax
10 swap the rst column of B with Cmax

Note that there may be more than one which allows a maximal decomposition of the
forbidden submatrix. Furthermore, although there may be -decompositions for a given
forbidden submatrix B that ful Il the prerequisites of Theorems 4.11 to 4.14 presented in
Section 4.3.1, this might not be true for any of the maximal decompositims of B.

4.2 A Reduction to d-Hitting Set

This section is divided into two parts. The rst part gives a polynomial-tim e algorithm for
nding all inductions of a xed forbidden submatrix in a larger matrix. This will lea d to
approximability and xed-parameter tractability results presented in Subsection 4.2.2.

4.2.1 Finding Forbidden Submatrices

Before considering which rows to delete from a given input matrixA in order to make A B -
free, we obviously have to actually nd those sets of rows that are responsible for the
induction of B in the rst place.

An algorithm to achieve this proceeds as follows: In order to nd all inductions of B in A, we
rst generate all g (at most r!) distinguishable row-permutations of B. We denote theith per-
mutation thus obtained by {(B). Each (B) contains s column vectors called i1;:::; is.
After having generated the permutations, for each combination ofr rows in A, we iterate
over the column vectors inA induced by these rows. If one of these vectors is equal to g; ,
we mark that 4 If, in one column iteration, all i have been marked for a particulari,
we know that theser rows induce B. Such anr-sized set of rows can then be added to
the generated output collection C. For the following formal description of the algorithm, we
label the rows in A by 1 through n.

Algorithm: Finding all inductions of B in A
Input: A matrix A from the same alphabet asB
Output: A collection C of r-sized sets of rows inA

4Care must be taken if for some i, j and j%we have jjo = joo. In the formal description of the
algorithm, this is achieved by lines 09, 10, and 11 which allow each j to be marked at most once and break
the iteration over j (line 07) once a certain jj has been marked.

36 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

Co C1 C C3 C C5 C C7 Cg Co
[0/ 100 0/100 0 - 13
r1{0 000000O0O0 1 ot
2101001000011 C= ff roiri;rag;fro;ra;rag;
B P T froirsirsg; fro;rairsg;
4010000004 100 fri;rairagifrairsiragy
5|0/ 001 100 00

Figure 4.2: Finding all sets of rows that induce a forbidden submatrix: In the binary
matrix on the left, we want to nd all rows that induce the forbidden submatrix . The
corresponding output of row sets as generated by the algorithm presented in Section21
is shown on the right. The grey underlay shows, as an example, hoB is induced by the
rOWS ro; r3; rs in columns c; and ¢ and thus leads to the addition of frg;rs3;rsgto C

where the rows in each set induceB.

01 Generate the column vectors j1;:::; is as described above
02 C ;

03 for everyr-sized subsetS of f1;:::;ng do

04 create array V[q][s] lled with \0"s

05 for | 1:::mdo

06 for i 1:::qdo

07 for j 1:::sdo

08 if the rows in S in the I-th column induce j then
09 if V[i][j16 1 then

10 VIl 1

11 break

12 if 91:81 j s:VJi][j]=1 then

13 C CJ[f Sg

The output of this algorithm is illustrated in Figure 4.2.

The algorithm runs in polynomial time with respect to the input matrix A|given that the
forbidden submatrix B is xed|as the next theorem shows.

Theorem 4.7 Givenann m matrix A and a xed r s forbidden submatrixB (where 1
r nandl s m). Then we can nd all r-sized sets of rows inA that induce B
in O(n"m)li.e., polynomialjtime.

Proof In order for the algorithm presented in this subsection to run in polynomial time,
it is important to stress that B is not part of the input of a Row Deletion (B) problem.
The running time of the above algorithm is O(q s) = O(r! s) for the generation of the
column vectors in each of the (B) in line 01. The running time of the inner loop in lines
04 through 11 is bounded byO(s q+ m q s)= O(s r!+ m r! s), the if-statement in line
12 requiresO(qg s) = O(r! s) time steps for execution. Lineso4 through 13 are executed due
to the for-loop in line 03, which adds a multiplying factor of O(n"). Thus, the total running

time is
© LT il gt 9y

line 01 line 03 lines 04 to 11 line 12

4.2. A REDUCTION TO D-HITTING SET 37

For a xed B, r and s are constant, i.e., independent of the size of the input matrixA, and
the running time is therefore
O(n"m)

which is polynomial in the size of the input matrix A.

It should be noted that the algorithm presented above will of course not alwag be directly
applied to a given Submatrix Occurrence (B) problem since the factorg|although being
constant for a given B |can get impractically large already if r 10 (as it is only bounded
by r!). This factor should thus not be omitted. However, this is just a worst-caseestimation
that does not make any use of special propertie8 might have. Such a property might be
that two columns in B are permutations of each other, which leads to a signi cant reduction
of g. This will not touch the O(n"m) bound given by Theorem 4.7, however, for practical
applications, signi cantly improve the constant factors neglected in the O-notation. Such
an example will be given in Theorem 5.19 where it will be shown how all inductias of the
matrix in a binary matrix can be found by testing for the presence of two out of the
three column vectors (110)7, (101)7, and (011)7 instead for all six distinguishable row
permutations of B. This roughly halves the running time compared to the algorithm of this
section.

4.2.2 Approximability and Fixed-Parameter Tractability R esults

By Theorem 4.7, we can nd all sets of rows in a matrix A that induce a forbidden sub-
matrix B of sizer s in polynomial time. Thus, according to the de nition of the Row
Deletion (B) problem, from each such set at least one row has to be removed frol in
order for A to becomeB -free. Note how therefore,Row Deletion (B) is closely related to
r-Hitting Set

Corollary 4.8 Given ann m matrix A and an integer k as an input instance of Row
Deletion (B) whereB isanr smatrix (1 r nandl s m). Then, this instance
is parameter-preserving reducible to an instanceC; S; k) of r-Hitting Set

Proof The idea behind this reduction is the following: We willlin polynomial time wi th
respect tok and the size ofA| nd all inductions of B in A. If there is a set of rows inA
that induces B, we delete at least one of the rows from that set iPA to avoid this particular
induction. This is the analogy to r-Hitting Set , where we must similarly choose at least
one element from each subset in a given collection.

Thus, given an instance ofRow Deletion (B), we can generate an instance of -Hitting
Set by setting S equal the set of rows inA and using all r-sized sets of rows that induceB
(as generated by the algorithm presented in Section 4.2.1) a8. The parameter, k, is directly
preserved. (An example for the reduction is given after the proof.)

Since the parameter k, is preserved throughout the reduction, only the equivalence of solu-
tions remains to be shown:

Let S° S be a solution of sizek to the r-Hitting Set problem (C; S; k) generated by the
reduction. Now, delete the rows inA that correspond to the elements inS° yielding A°.
Assume that B were still induced in ACby a set| of rows. Then, the rows inl did induce B
in A, meaning a set containing these rows was put intaC. But one row of I must then have
been deleted sinces® is a valid solution to (C;S; k), a contradiction. Therefore, B cannot
be induced by A° anymore.

38 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

If, on the other hand, A can be madeB -free by deleting k rows, then for each induction
of B in A by some rows, at least one of those rows must have been deleted. This implies,
that, by choosing the elements corresponding to the deleted rows as a solutioB® S to
the generatedr-Hitting Set instance, we have chosen at least one element from every set
in C, making S° a valid solution of sizek.

Let us illustrate the reduction of the above corollary by the following exanple. Let the

forbidden submatrix be and 0 L

A::@ A

RPOOOORr
[elelelele)

0
0
0
0
0
1

[elele]olole]
[olelel Hele]
RPOOOOO
(o] ol elel)
[l] lelele]
[olel o Hele]
[elel g]

be the input matrix to Row Deletion (B), consisting of the six rowsrg:::rs and ten

columnscy:::cg. SinceB is of height 3, the algorithm from Section 4.2.1 will generate a
3-Hitting Set instance. Iterating over every possible combination of three rows inA, we

nd that B is induced by the rowsrg;ri;r3 (in columns cg and cg), ro;rz;rs (columns cg

and cg), etc. Thus, the generated3-Hitting Set instance consists ofS = frg;:::;rsg and

C= ffrg;ry;rsg;fro;ro;r3g;:::g. The complete C was already given in Figure 4.2, where
it is also shown (grey underlays) how, as an exampleB is induced by the rowsrg;rs;rs in

columns¢; and cs. Observe that A can be madeB -free by deleting, e.g., the rst and last

row, which leads to

A%:=

[eolele]e]
[olelo]e]
[elolo]e]
ooro
[elolo]]

0
0
0
0

RRoO
Na=l=]
orro
orkpR

Choosingrg and r4 accordingly solves the3-Hitting Set instance.

It might seem awkward that we have performed a reduction to a knownNP-complete problem
without having proven that Row Deletion (B) is NP-complete in the rst place. The
dependency betweenB and the hardness ofRow Deletion (B) are further analyzed in
the next section, where some structures foB are given for which Row Deletion (B) is
NP-complete.

With the reduction of Row Deletion (B) to d-Hitting Set from Corollary 4.8, we can
immediately deduce that Row Deletion (B) is xed-parameter tractable:;

Corollary 4.9 Given B, Row Deletion (B) is xed-parameter tractable.

Proof Corollary 4.8 gave a parameter-preserving (and therefore also parameterizedgduc-
tion from Row Deletion (B) to d-Hitting Set with a xed d (equivalent to the height r
of the forbidden submatrix B).

We can also obtain an analogous approximability result:

Corollary 4.10 Row Deletion (B) for a givenr s matrix B may be approximated to a
factor of r in polynomial time.

Proof We rst perform the reduction from Row Deletion (B) to the corresponding d-
Hitting Set problem. The corollary directly follows from the facts that k is preserved in
the reduction and that d-Hitting Set can be approximated to a factor ofd by subsequently
choosing all elements from a set irC until we have a valid solution.®

5The approximation factor is due to the observation that for e very set from C, we must choose at least
one element due to the de nition of d-Hitting Set

4.3. HARDNESS RESULTS 39

So far, we have shown that a giverRow Deletion (B) problem is not harder than its corre-

sponding d-Hitting Set problem. However, no lower complexity bound for the hardness
of Row Deletion (B) has been given. In Chapter 3, we have introduced the \parameter-
preserving” reduction for nding close relationships concerning the xed-parameter complex-
ity of problems. Such a reduction will be used in the following discussion to explib some

relationships betweenRow Deletion (B) and d-Hitting Set depending on the structure
of B.

4.3 Hardness Results

The main results of this section concerning the hardness dRow Deletion (B) depending
on the structure of B are summarized in Subsection 4.3.1. The proofs for Theorems 4.11
to 4.14 are provided in the subsequent Subsections 4.3.2, 4.3.3, and 4.3.4.

4.3.1 Overview of Results|Four Theorems

The main results of this section are as follows:

Theorem 4.11 (Proof on page 47)

Let B be a forbidden submatrix of size& swith a -decompositionB where the submatrixV
(of height r% of B is not induced in the non-encoding part ofB . Then there exists a
parameter-preserving reduction fromr%Hitting Set to Row Deletion (B).

If V is induced in the non-encoding part of B , but we can nd one column vector of V
which is induced there at most oncethe following hardness result forRow Deletion (B):
can be achieved:

Theorem 4.12 (Proof on page 53)

If the r s-submatrix B has a -decomposition B where the submatrixV of height r°
has a column vectorv that is induced at most once in the non-encoding part oB , then
r%-Hitting Set is parameter-preserving reducible toRow Deletion (B).

If neither the prerequisites for Theorems 4.11 nor those for Theorem 4.12 can be fuléd,
there are two more subcases for which a hardness result can be established:

Theorem 4.13 (Proof on page 43)

Let B be a forbiddenr s-submatrix with a -decompositionB where all entries ofU are
equal to and V contains r°rows. Then r%Hitting Set is parameter-preserving reducible
to Row Deletion (B).

Theorem 4.14 (Proof on page 44)

Let B be a forbiddenr s-submatrix with a -decompositionB where all entries of W are
equal to andV contains r° rows. Then r’Hitting Set is parameter-preserving reducible
to Row Deletion (B).

6Recall that Chapter 3, we stressed that in complexity theory , computational bounds are always relative,
meaning they are only statements such as \if problem L is easy, L is easy as well".

"Note that Theorem 4.11 and Theorem 4.12 are in some sense orth ogonal, since it is possible to construct
a submatrix B which ful lls the prerequisites of Theorem 4.11, but does no t those of Theorem 4.12, and
vice versa.

40 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

The NP-completeness ofd-Hitting Set for d 2 leads to the following corollary:

Corollary 4.15 If a forbidden submatrix B has a .decomposition that ful lls the prereg-
uisites from any of the Theorems 4.11-4.14 and wher&/ has height2 or greater, Row
Deletion (B) is NP-complete.

For all other cases, i.e., ifB does not ful ll any of the prerequisites® from Theorems 4.11
to 4.14, no general statement on the problem's complexity has been established sa fmote
the conjecture in Section 4.4).

The proofs for Theorems 4.13 and 4.14 will be presented in the following subseéah, followed
by separate subsections for the more involved proofs of Theorem 4.11 and Theorednl? in
Subsections 4.3.3 and 4.3.4, respectively. Following each proof, an example given to
illustrate its main ideas.

4.3.2 Proofs for Theorems 4.13 and 4.14

The key idea behind all of the following reductions will be to use the matrixVV of a given

-decomposition of the forbidden submatrix B to encode a givend-Hitting Set instance
into an instance of Row Deletion (B) (i.e., a matrix A) and use as a\ lling-symbol" to
prevent unwanted inductions of B in A. This idea is illustrated in more detail in the proof
of the following Lemma:

Lemma 4.16 Let B be a forbidden submatrix of sizer s with a -decomposition B
wherer = r9(r%=0). Then r-Hitting Set can be parameter-preservingly reduced t&ow
Deletion (B).

Proof Let (C S;k) be an instance ofr-Hitting Set , where S = f1;:::;ng. The idea
behind the reduction is the following: We will create a matrix A of sizen (s jCj) where
each row corresponds to an element irs. For each setC in C, we will encode aB into a
set of s consecutive columns ofA, using the rows that correspond to the elements inC. We
then have to show that there is a \1:1-correspondence" between deleting a row i\ and
choosing an element fromS. More precisely, we have to show that when we delete a row
in A corresponding to the elementz 2 S, exactly those inducedB in A are destroyed that
were encoded due to sets fron€ that contained z.

The encoding ofB is done by the following algorithm:

Algorithm: r-Hitting Set to Row Deletion (B), Lemma 4.16

Input: An instance (C; S; k) of r-Hitting Set

Output: An instance of Row Deletion (B) which is parameter-
equivalent to the given r-Hitting Set instance

01 create ann s jCjmatrix A =(a;) lled with 's
02 col O
03 for each setC 2 C do
04 row 1
05 for eachi 2 C do
06 for ¢ 1:::sdo
8 An example of such a matrix would be B = é%% over the alphabet = fO0;1g.

4.3. HARDNESS RESULTS 41

07 aj; col+ ¢ brow iC
08 row row+1

09 col col+s

10 return (A; k)

Line o7 of the code may be interpreted as follows: For therowth element z; of the colth
set C 2 C, the rowth row of B is written into the colth set of s consecutive columns inA
into the zjth row (i.e. the row in A that corresponds toi).

For every set C in the collection C, B is induced in the rows of A corresponding to the
elements ofC (lines 05 through 07). The other entries of A remain lled with 's. This
reduction can be computed in polynomial time with respect to the input, i.e.,

O(jCj r s):

Having established that the reduction can be computed in polynomial time whilst preserving
the parameter k, only the equivalence of solutions remains to be shown.

Assume that we have a solutionS® S of sizek to a given r-Hitting Set instance. We
then delete the rows inA that correspond to the elements ofS° obtaining A°. Now, assume
that B is still induced in A% Then, the r s® submatrix V in the decomposition of B is
also induced inA°

Claim: If V is induced by a set of columns inA°, none of these columns contains less than
symbols di erent from

Proof: Having a column in A°with less than r symbols di erent from inducing a column
of V is a contradiction to the fact that V has heightr and does not contain .

The claim implies that there is at least one columnc in A°that contains exactly r symbols
di erent from (note that due to the encoding of the algorithm, no column of A° may
contain more than r symbols di erent from). If this is the case, then there is a set inC
from the r-Hitting Set instance that was encoded intoA for which none of the encoding
rows have been deleted. But thenS° contains no element of this set, a contradiction to the
assumption that S%is a solution to the givenr-Hitting Set instance.

Now, we prove the reverse direction of the above: Assume that by deleting rows in A
we can make the resulting matrix A° B-free. Then, from each set of rows that induces3
in A, at least one row must have been deleted. This implies that from eaclB which was
encoded intoA, at least one row has been deleted. We claim that the se8° S consisting
of those k elements inS for which the corresponding rows inA have been deleted, solves
the given r-Hitting Set instance. If this were not the case, there would be a se€ 2 C
for which C\'S °= ;. For every set in C, the algorithm given above encoded a matrixB
into A. The existence of aC 2 C for which C\S %= ; then implies, however, that in A°, all
rows of this particular encoding are still present, a contradiction to the assunption that A°
is B-free.

Let us illustrate the proof of the above lemma by an explicit example (a moregeneral scheme
for the above proof is provided in Figure 4.3). Assume that we are givenhe forbidden
submatrix B := 1 over abinary alphabet. A -Decomposition ofB isB = 1 with =
0. Now, for the example, we will take the following instance of 2Hitting Set °: S =
f1,2;3;4,59, C= ff 1,2g;f1;3g;f1;4q;f2;3g;f2; 5g; f3; 499, the parameter k is arbitrary as
it is preserved by the reduction. The algorithm given in the above proof will then initialize

92-Hitting Set is more commonly known as Vertex Cover

42 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

CSk B R R
.() C1R N
An instance of 2
r-Hitting Set i NN NN [T rows
| 5 NN N
s jsiq 6 [\
SO SOO X \
o D : : |
= f°{ v \\\“\Q Ll ey
A -decomposition S S S
of the forbidden - RN ’
submatrix B s ICj

Encoding of the r-Hitting Set instance
into a Row Deletion (B) instance

Figure 4.3: Reduction from r-Hitting Set to Row Deletion (B) used in the proof of
Lemma 4.16: Given ar-Hitting Set instance and a decomposition oB whereV has the
same height asB. Then, the algorithm from the proof of Lemma 4.16 gives a parameter-
preserving reduction fromr-Hitting Set to Row Deletion (B) (output of this algorithm
is the right matrix). All entries of the output matrix not containing any pa rtof V or W are
equal to

ajSj s jCj(i.e.,5 1 6)matrix A, Il it with zeros, and then iteratively (lines 04 through
09) encode each set of:

000000 100000
000000 encodefl;2g 100000
A= 000000 = A= 000000 =)
000000 000000
000000 000000
I I
110000° 111000°
encodef 1; 3g 100000 encodefl;4g 100000
= A= 010000 = A= 010000 =)
000000 001000
000000 000000
111000 111000
encode f 2; 3g 100100 100110
= A= 010100 =) =) A= 010101
001000 001001
000000 000010

An optimal solution of size 3 to the encoded instance of Hitting Set s, e.g.,S°= f2; 3; 4g.
Deleting the corresponding rows inA leaves us with

A= (§58098):
Note that each column in A®contains less than two 1's and can therefore not participate in an
induction of B [this is exactly the argument employed in the above proof. It also illustrat es
the purpose of the -Decomposition: In our example, 0 was chosen as and thus is not
part of V in the -Decomposition of B. The advantage ofV having the same height asB
and not containing 's is that, during the encoding of the givenr-Hitting Set instance,
it is easy to avoid unwanted inductions of V in A and therefore ensure that destroying all
inducedV in A will also destroy all induced B .1° The main reason for the subsequent proofs

10 For instance in the above example, we simply had to ensure tha t from every column containing two 1's,
at least one 1 is deleted.

4.3. HARDNESS RESULTS 43

NN EEENNY)
(CSk) NSRS BTN Encgc!mg of the
An instance of . [BENNN ~o | r%Hitting Set
rOHitting Set jSjq instance using
l R | | the algorithm
s | : ' | from Lemma 4.16
— -
SO SOO
"
r%+ k <
ros |V
r L
0 - - -
r . S S S
A -decomposition sTCj
of the forbidden
submatrix B Encoding of the r%Hitting Set instance

into a Row Deletion (B) problem

Figure 4.4: Reduction from r%Hitting Set to Row Deletion (B) used in the proof of
Theorem 4.13: Given anr%Hitting Set instance and a decomposition oB whereV is of
height r®and the bottom r%rows contain just 's as their entries. Then the algorithm from
the proof of Theorem 4.13 gives a parameter-preserving reduction from%Hitting Set to
Row Deletion (B) (output of this algorithm is the right matrix). All entries of the output
matrix that are not explicitly determined by V or W in the gure are equal to

in this and the following subsection becoming quite involved is to ensure that no uwanted
inductions of B occur in the output matrix A. For the proof of Theorem 4.13, however,
Lemma 4.16 is easily extended:

Proof of Theorem 4.13 Let (C,;S;k) be an instance of r®Hitting Set , where S =
f1;:::;ng. First, encode the givenr “Hitting Set instance into a matrix A°using the algo-
rithm from Lemma 4.16 and the rst r°rows of B as the forbidden submatrix. Then, r%% k
rows'! containing just -entries are added to the bottom of A° yielding A.

In close analogy to the proof of Lemma 4.16, a solutiorS8° S to the r%Hitting Set -
problem gives a solution toRow Deletion (B) on A: Deleting those rows inA that corre-
spond to the elements inS? inhibits all inductions of V in A. Proving the reverse direction,
we need to delete at least one row from every encoded in A in order to make A B -free
(note that this cannot be done by deleting the bottom rows as there are too many \th
respect to k).

An overview for the encoding employed in the above proof is given in Figure 4.4.A -

decomposition of a matrix that would ful Il the conditions of Theorem 4.13 is, e.g.,
!

ocorRE
oOoOror
(olelele])

with =0,and U= 89 . Due to the close analogy to Lemma 4.16, we shall not give an
explicit example for the encoding.

11Recall from De nition 4.5 that r%is the height of the submatrix U in the -Decomposition of B

44 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

The proof of Theorem 4.14 requires a more involving extension of the ideas present in
Lemma 4.16.

Proof of Theorem 4.14 The construction of the input matrix A to Row Deletion (B)is
best explained as follows: ImagineéA to be composed of four submatrices (see also Figure 4.5
for an illustration); the upper left submatrix is generated by the algorithm f rom Lemma 4.16
to encode a given instance of “Hitting Set using V as the forbidden submatrix. The
lower right matrix contains U in some form (to which we will come later on in this proof).
The other two submatrices contain just 's as entries. Note that then eachV induced in
the upper left submatrix of A inducesB with any induced U in the lower right submatrix

of A. If we ensure that the induction of B in A cannot be prevented by deleting rows from
the encodedU and that V is not induced in the lower right submatrix of A, an argument
similar to the one used to prove Lemma 4.16 can then be employed to prove this leme.

Now, let (C;S;k) be an instance ofr®Hitting Set with S = f1;:::;ng. The given r%
Hitting Set instance is rst encoded into a matrix A°using the algorithm from Lemma 4.16
and V as the forbidden submatrix. Then, s°° (k + 1) columns containing just -entries are
added to the right of A% yielding A°. To A% r% (k + 1) rows containing just -entries are
added to its bottom; we thus obtain A.

As already explained above, we now need to write som&'s into A in order to induce B
in A. For these U we will require that the following two be ful lled:

a) V is not induced in the resulting matrix by the entries of the written U's (this is to
ensure that B is not induced in the right part of A).

b) No induced B can be destroyed by deleting at mostk of the lower r° (k + 1) rows
of A (this will ensure the equivalence of solutions later on in the proof).

In order to ful Il these two conditions, two cases are distinguished:

I. The matrix U does not induceV :

We will write k +1 U into the lower right submatrix of A in a diagonal pattern.
Writing U more than k times secures condition b) stated above, the pattern will
ensure that a) is ful lled.

Writing U into A is done by applying the following algorithm to A (using the lower
right submatrix U = (uj;j) of B):

Algorithm: Encoding U, Theorem 4.14, case |
Input: The values ofjCjand k of an instance
(C; S; k) of r%Hitting Set , the

matrices A = (&;) and U = (u;;)
Output: Matrix A modi ed accordingly

o1 for h 0:::k

02 for i 1:::r
03 for j 1:::8%
04 QiSj + h %% j; jCj s0+ h s00+ Ui;j

This algorithm encodesU k + 1 times into A (see Figure 4.5), each in a di erent set
of rows. Any induced B in A can therefore only be destroyed by deleting rows that

4.3.

HARDNESS RESULTS 45

Encoding of the rHitting Set instance

using the algorithm from Lemma 4.16 Case I: U is V -free
-
(CSk) e 19
An instance of . [I
rOHitting Set iSiy T' .
> | |4 dar - : (k+1) s%
0 g0 7 K p
— X 0 : : Case II: U inducesV
o (k+1)r% <
ro v | oo . " \
o [P P P
A -decomposmon 0 iCj L2
of the forbidden g00
submatrix B Encoding of the r-Hitting Set instance

K . 00
into a Row Deletion (B) problem (k+1) s

Figure 4.5: Reduction from r%Hitting Set to Row Deletion (B) used in the proof of
Theorem 4.14: Given ar®Hitting Set instance and a decomposition oB where W con-
tains just 's. Then the algorithms from the proof of Theorem 4.14 (with Cases | and II)
give a parameter-preserving reduction fromr %Hitting Set to Row Deletion (B).

induce the respectiveV. Therefore, if we have a solution forRow Deletion (B) on A
of size at mostk, at least one row from each encoded matri®/ must have been deleted,
which is also a solution to the original r%-Hitting Set problem (see Lemma 4.16 for
a more detailed explanation of this argument). Now, if there is a solution & sizek to
the r%Hitting Set problem, deleting the corresponding rows inA will also destroy
all inductions of V in A. SinceV is not induced by any U (note that multiple U
cannot induce V because of the way they are encoded}) is V -free after the deletion
and therefore alsoB -free.

The matrix U inducesV:

The strategy for enclosing theU into A in this case is the following: We will Il the

lower right submatrix in C of A with s®°columns containing just U (see Figure 4.5).
Note that then, although both V and U are induced in the lower right submatrix
of A, B is not induced there because this submatrix contains onlys® columns with
entries other than 's and for s (the width of B), s >s%holds. The nal argument in

the proof of this case is that if V is not induced in the upper left submatrix of A, U

cannot be induced there either (sincel inducesV) and therefore, A would then be B -
free.

Writing U into A is done by applying the following algorithm to A (using the lower
right submatrix U = (uj;) of B):

Algorithm: Encoding U, Theorem 4.14, case Il
Input: The values ofjCjand k of an instance
(C, S; k) of r%Hitting Set , the

46 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

matrices A = (&;) and U = (u;;)
Output: Matrix A modi ed accordingly

o1 for h 0:::k

02 for i 1:::r%
03 for j 1:::8%
04 Qsj+ h roo j; jCj sO+j Ui

This algorithm encodesU k+1 times into the lower right submatrix Agr = (&;) of A

provides an illustration for this. Although V is induced in the Us written into A r, B
is not induced there becauses > s% Therefore, A is B -free if the upper left submatrix
of A (designated A%at the beginning of this proof) induces neitherV nor U.

The rest of our argument is similar to the proof of Lemma 4.16: Sinc&J inducesV, A%
ful lls this condition if it does not induce V. Therefore, if we have a solution forRow

Deletion (B)on A of size at mostk, at least one row from each encoded matri®Y must
have been deleted, which is also a solution to the originat Hitting Set problem.
If, on the other hand, there is a solution of sizek to the r%Hitting Set problem,
deleting the corresponding rows inA will also destroy all induced B in A by destroying
all vV in A®

Summarizing the two cases, we have proven the theorem.

The general scheme for the above proof is illustrated in Figure 4.5; we shaiow furthermore
illustrate it with the following example:

Let there be two forbidden submatricesB, and B, with

10 10
B, := %2 and By = %2
02 01
For =0, matrix B, meets case | of the above proof withv = 1 ,U = 1 and B

meets case Il withV = 1 ,U = 1 . Using the above matrices, we encode the instance
C= ff 1;29;f1;3g;f1;49;f2;3g;f2;50;f3;49g, S = f1;2;3;4;59, and k = 3 of 2-Hitting
Set . We perform two parameter-preserving reductions from this instance to two instance;,
and A, of Row Deletion (B;) and Row Deletion (B), respectively. Both A, and A
will be of size (Sj+(k+1) r% (s°jCj+(k+1) s% (i.e., 13 10). The upperright5 6
submatrices of A; and A, are generated by the algorithm from Lemma 4.16 using/ as the
forbidden submatrix (note that V are the same forB, and B;) and equal to

|

OOORF
ROORrO
(o)l lele)

110
001
101
010
000

For a more detailed explanation as to how we derive this matrix, the reader is defrred to the
corresponding example of Lemma 4.16. Filling the lower left and upper right submtices
of A, and A, with 's and encoding the respectivdJ, we arrive at

0 1 0
A = E and Ay = %

coocoocoooooo00
>0 =

[ololololololololelele) o
[olelelololelololelal de]
[olelolololololole] Hele]
[ololololololololelal g o]
[olelelololelolol Helel He]
[olelololololololel d Hole]
OOO0O0OONFROO0O00O
OOOONRFPOOO00O000O
OONFRPOO0OO0O0O00000
NROOOOO0O0O00000
[olelelolololololelele)
[olelololololololelel de]
[olo]lolololololole] Jdolo]
[olelelolololololelely He]
[olelolololololeol Helel e
[olololololololole] J dole]
PRRPRPRPRPRPROOOOCO
OOO0O0O0OOOOOOO0O
[ole]lolololololololololole]

4.3. HARDNESS RESULTS 47

Note that after deleting at most 3 out of the bottom 8 rows, the respective fabidden
submatrices are still induced. A solution of size 3 to the encoded instance of-Hitting

Set is, e.g.,S°= f2;3;4g. Deleting the corresponding rows in eachA; and A, leaves us
with

011100000001 011100000001
0000100000 0000100000
0000001000 0000001000
WL e L
A= B 0000000300% aNdA; = B 060600001000%
0000000010 0000001000
0000000020 0000001000
0000000001 0000001000
0000000002 0000001000
where the respectiveB, and B, are no longer induced.

4.3.3 Proof of Theorem 4.11

Proof of Theorem 4.11 This reduction from r%Hitting Set to an instance (A;k) of

Row Deletion (B) is very similar to the one used in the proof of Theorem 4.14, except
that we additionally have to encode W appropriately into A to ensure that B is indeed

induced in conjunction with the encodedV and U. Let (C; S;k) be a given instance of
rC-Hitting Set , whereS = f1;:::;ng.

Firstly, the given r%Hitting Set instance is encoded into a matrixA° using the algorithm
from Lemma 4.16 andV as the forbidden submatrix. Then, the given instance ofr >-Hitting
Set is encoded into a second matrixA% this time using W as the forbidden submatrix. A
third matrix A%is generated by writing matricesU = (uj;) from the decomposition of B
in a diagonal fashion into it (in a similar way as was done in the rst case in the proof of
Theorem 4.14). This is done by applying the following algorithm to a (Cj r% (jCj s%
matrix A%% (2% lled with 's:

Algorithm: Encoding U into A°Paccording to Theorem 4.12
Input: An instance (C; S; k) of r-Hitting Set

the matrices A%%= (a®) and U = (uj;)
Output: Matrix A°modi ed accordingly

o1 for h 0:::jCj

02 for i 1:::r®
03 for j 1:::8%
000
04 8n ooy soonj Ui

The nal matrix A we use for the reduction is then composed by tting together four
submatrices: The upper left submatrix is A% the upper right A% the lower left contains
just and the lower right is A°% Figure 4.6 illustrates the resulting matrix A.

The parameterk is preserved by the reduction, which can be carried out in polynomial time
with respect to the input size (since the four components ofA can each be constructed in
polynomial time). The equivalence of solutions remains to be shown:

Note that deleting a row corresponding to an element inS will always destroy more encoded
submatrices than deleting any other row. Assume that by deleting at mostk rows in A,
we can makeA B -free. Then there exists such a solution where only rows corresponding to
elements inS have been deleted. From every induced in the upper part of A, at least one
row must have been deleted. This directly implies that by choosing those elements frors
corresponding to the deleted rows as the elements &° we have chosen at least one element

48 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

Encoding of the r®Hitting Set instance Encoding of the r%Hitting Set instance

using the algorithm from Lemma 4.16 using the algorithm from Lemma 4.16
and V as the forbidden submatrix and W as the forbidden submatrix
***** N
(CSk) T o B O N N N
An instance of . I CON N
ro-Hitting Set ISiq A T A P P T
] A
S L L
0 s -
" .
ol [y = ICi4 z)
r L
N7
ro - / PR
A -decomposition % jCj

of the forbidden

submatrix B Encoding of the r%Hitting Set instance

into a Row Deletion (B) problem

Figure 4.6: Reduction from r%Hitting Set to Row Deletion (B) used in the proof of
Theorem 4.11: Given ar -Hitting Set instance and a -decompositionB of B where the
part of B containing U and W does not induceV. Then Case | of the two constructions
used in the proof of Theorem 4.14 gives a parameter-preserving reduction from-Hitting
Set to Row Deletion (B).

from every encoded set from ther -Hitting Set instance. Thus, S°is a valid solution of
size at mostk to the given r%Hitting Set instance.

Now, assume that we have a solutionS® S of sizek for the given r%Hitting Set and

delete the corresponding? rows in A, obtaining Age . Then, from eachV encoded into the

upper left part (designated A°in the construction) of A, at least one row has been deleted.
Every column in A° contains less thanr® 's after the deletion. SinceV does not contain

the symbol , this also implies that V is not induced in A° after the deletion. Therefore,

if V were still to be induced in Age, this would mean that V was already induced in the
right part (designated A%®and A%%n the construction) of A. Let us call this part Arignt -

The induction of V in Agn is, however, impossible for the following reason: Recall thav
was not induced in the non-encoding part ofB . If V is to be induced inAyign: , this implies
that s° 2, because ifs®= 1, then V is induced in a single column ofAsignt and therefore
also induced inB.

Furthermore, the induction would have to include at least two columns in Aygne that were

generated by the encoding of twodi erent sets ofC. If these two columns are indeed part
of an inducedV in Ajgn , they must induce at least rO row vectors with symbols di erent

from in both columns. Now observe the row vectors induced by two columng; and ¢,

in Ajgnt that were generated by the encoding of two di erent sets ofC.

Since two sets inC di er in at least one element, in the upper n rows of Ayign a symbol

12Recall that in the rst n rows of A, the ith row corresponds to the ith element in S

4.3. HARDNESS RESULTS 49

di erent from in the rst column can meet a symbol di erent from in the second
column at mostr® 1 times.

In the rows below the rst n rows of Aign , the U's corresponding to the encoding of
the two sets from C have been written into Aigne in the diagonal fashion as illustrated
in Figure 4.6. Therefore, a symbol di erent from is always met by a in the other

column in any of the lower rows.

Thus, for all rows in Aqignt , €1 and c; only induce at most r® 1<r %row vectors with both
symbols di erent from and therefore cannot induceV.

Thus, if we have a solutionS® S of sizek for the given r%Hitting Set and delete the
corresponding rows inA, V is not induced in the resulting matrix anymore and therefore, B
is not induced there anymore; indicating that we have a valid solution of sizek to Row
Deletion (B).

Let us illustrate the above reduction by an example: Take the forbidden submatrixB :=
%é over a ternary alphabet. Taking = 0, we see that this matrix is already a -
decomposition according to the prerequisites of Theorem 4.12, since the right columof B
does not induce the left one. As in our previous examples, we shall again create an in-
stance of Row Deletion (B) from the 2-Hitting Set problem S = f1;2;3;4;5q9, C =
ff 1;2g;f1;30;f1;4q;f2;3g;f2;5g; f3;4gg, and arbitrary k. Using the construction for the
matrices A% A% and A%9that will later be put together to construct the instance of Row
Deletion (B)) given in the proof, we obtain

! ! 0 1
153908 153008 T

A°= 10101 ,A%®= goo000i ,andA%% @JQ02900A:
001001 000000 000020
000010 000000 000002

Putting these matrices together as A’ Aq , we nally get

0 AOOO]
01110001110001
100110000110
010101000001
001001000000
000010000000

A=B000000200000 ¢<:
000000020000
000000002000
000000000200
000000000020
000000000002

As mentioned in the previous examples, deleting the second through fourth row of this
matrix should constitute a solution to Row Deletion (B), which is also the case this time
as is easy to check.

4.3.4 Proof of Theorem 4.12

The proof of Theorem 4.12 will mainly be a generalization of the following lemma 4.17
concerning a general observation for binary forbidden submatrices of size 2. Lemma 4.17
is then generalized to anyr 2 matrix by Lemma 4.18, from which we deduce Theorem 4.12.

Lemma 4.17 Let B be a binaryr 2 matrix. If, fora 2 f0;1g, B contains a column
with d symbols di erent from , d-Hitting Set is parameter-preserving reducible toRow
Deletion (B).

50 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

117)

©o | rlay

1 1

10y (r° 1 17 1

© | lao c o rlay s rlay © oy
R A H A T

Co o | Hiao | Hiao s | o)

01 1 0 0

0 0 - >r00

: | oo

10 0] J

Figure 4.7: Sorted decomposition of a binary matrixB according to the proof of Lemma 4.17.
To the right of B, the decomposition submatricesV, W, and U are shown.

Proof We will assume w.l.o.g. that we are given a maxima® -Decomposition B _max
of B.'* Furthermore, we assume w.l.0.g. that for the maximal decomposition, = 0.

Note that since B is only of width 2, the decomposition-matricesV, W, and U are all
column vectors. The following observations can be made foB :

None of the two columns inB may contain a 0 more thanr? times: Otherwise, we
could choose =1, obtaining a higher V in the corresponding decomposition oB |a
contradiction to our assumption that the given decomposition is maximal.

The right column may not contain more 1's than the left column in the decompo-
sition because then the right part of B would be the encoding part in a maximal
-decomposition ofB.

The second observation leaves us with two cases to consider for the giverdecomposition of
B: Either, the right column contains less than r®or exactly r°1's. The rst case is already
handled by Theorem 4.14, because if the second column in the decompositions containsdes
than r% 1's, it cannot induce V sinceV contains exactly r° 1's. Therefore, from now on
we let B be a binary r 2 matrix where each row contains exactlyr® entries equal to 1.
Furthermore, we assume thatB is sorted such that|from top to bottom|the rst i1 row
vectors in B are equal to (1 1), the next iug) row vectors are equal to (1 0), the next i
row vectors are equal to (0 1), and the bottom i row vectors are equal to 0o). The
resulting matrix B and the submatricesV, W, and U of such a sorted decomposition are
shown in Figure 4.7.

13Recall De nition 4.6: This means that there is no 08 in A for which we can decompose B such that
the decomposition-submatrix V is higher than the one in the decomposition for

14 Considering only one maximal -Decomposition can be justi ed as follows: Let ri’ be the height of V ina
maximal -Decomposition of a forbidden submatrix B, and let rg be the height of V inany -Decomposition
of B. Then, clearly, rtl) rg. Thus, by considering a maximal -Decomposition, we claim that rg-Hitting
Set is at most as hard as rg—Hitting Set . This claim is easy to show: For any given instance (C;S;k) of
r9-Hitting Set , add r$ r? \dummy symbols" fdj1;:::;d;, 9 rogwith dij \S = ; toevery clause Cj 2C
in order to obtain C° Set S:= S[f dij jdij is a dummy symbol g. Then, clearly, (C% S%Kk) is an instance
of r&’-Hitting Set that has a solution of size k if and only if (C; S; k)|as an instance of rg-Hitting Set |has
one.

4.3. HARDNESS RESULTS 51

1 C g J& Ci C c
”””” SN I coTrTTT
| [1 AN [NABENN NN | I NN SN NN
Il NN NN N Il NN N
- |

hoL I Y I hOL
. Y g = 0
— 0 .
A
. S [. o -
Sl St St S Sl ad e o S Sl ad
1 1 1 11 11 1 1 1 1 11 1 1 1
iCj iCj iCj ici 1
Matrix A°as generated by the scheme Matrix A° after performing the merge
used in the proof of Theorem 4.11 operation for columns ¢ and cJ

Figure 4.8: An illustration for one step of the merge operation used in he proof of Theo-
rem 4.12

Note that a) this is a maximal decomposition of B, b) i(11) + i) = r0 and that c) o) =
io1) - Additionally, we can assume thati1y > 0, because for the casgiq) = 0, this lemma
has already been proven by Case Il of Theorem 4.14.

Given an instance C,S;k) of r%Hitting Set where S = f1;:::;ng. Then, the output
matrix A that is a parameter-equivalent instance ofRow Deletion (B) is constructed in
two steps:

1. Use the construction employed in the proof of Theorem 4.11 to obtain a mats A°
from (C; S; k) and B.

2. Perform the following \merge-operation" on A% While there are two columns in the
right part of A%that induce B, arbitrarily choose one of these two columns and delete
it (this operation is illustrated in Figure 4.8). Call the resulting ma trix A.

Performing the merge-operation is justi ed as follows: Let two columnsc; and ¢, in the left
part of A%induce B with two columns ¢ and ¢ in the right part of A° respectively. If ¢
and cJ induce B, they have to induce the row vector (1 1) exactly i; times. Note that by
means of construction forA® this row vector can only be induced in the upper part of A,
Note that additionally, each column in the upper right part of A° contains exactly i1, 1's.
Hence, ifc? and ¢§ induce the row vector (1 1) exactly i1 times, their upper n entries must
be identical. But then, observe howc; also inducesB together with ¢ and c, induces B
together with ¢§. Therefore, after the merge-operation,c; and c, still induce B with some
column in the right part of A%().

We now claim that Row Deletion (B) has a solution of sizek on A if the original r%
Hitting Set instance has a solution of sizé&k. To prove this claim, the same arguments as
in the proof of Theorem 4.11 can be employed due to () provided we can show that there
exists always an optimal solution to Row Deletion (B) on A that does not involve the
deletion of any of the bottom r% jCj: In order to see this, note that the following holds true

52 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

after the merge-operation: If a setM := cg;c?;::: was merged to a single columre,, note
that ¢, contains r°1's, some of which are to be found in the topn rows of A. Therefore,
a B induced by ¢, and some column in the left part of A that can be destroyed by deleting
a 1 from the bottom r% jCj rows of A can also be destroyed by deleting a 1 front,, in the
top n rows of A.

Sincek is directly preserved by the reduction, we have proven the lemma.

Let us illustrate the reduction in the above proof by the following example (the general
scheme is illustrated in Figure 4.8): Let = %(1) be given the forbidden submatrix .

This is already a maximal -Decomposition with V. = 1 and = 0. For the reduction

from 2-Hitting Set to Row Deletion (B) in this example, we shall use an instance
of 2-Hitting Set where C = ff 1;2g;f1;3g;f1; 40g; f2; 39,f 2;50,f 3;499, S = f1;2;3;4;5g,

and k = 3. Then AClis generated by the algorithm from Theorem 4.12, yielding

0 1110001110001
100110000110
010101000001
001001000000

0 000010000000

A= 000000100000 .
000000010000
000000001000
000000000100
000000000COQ1O0
000000000001

After performing the merge-operation (the 7th, 8th and 9th column are merged ad the 10th

and 11th column are merged), we have

0 1110001001
100110010
010101001
001001000
000010000

A= 000000100 ¢":
000000000
000000000
000000010
000000000
000000001

Note how after the merge operation, each one of the six left columns induces the foudilen
submatrix with exactly one of the three rightmost columns and that the three rightmost
columns do not induce by themselves.

We can easily generalize the above Lemma for larger alphabets:

Lemma 4.18 Let B be an -ary r 2 matrix over the alphabetA. If, fora 2 A, B
contains a column with d symbols di erent from , d-Hitting Set is parameter-preserving
reducible to Row Deletion (B).

Proof In principle, we use the same reduction as in the proof of Lemma 4.17, again em-
ploying the merge-operation. The merge-operations correctness for an alphabet ofzei 2 or
greater is justi ed as follows: In the proof of Lemma 4.17, we considered thé;; rows of B
which induced the row vector (1 1). Now, given a maximal decompositionB of a forbidden
submatrix of sizer 2, letigg be the number of rows inB that do not contain . Then,
if after the generation of A® according to Theorem 4.11, ifB is induced by two columnsc;
and ¢, in the right part of A°, the upper n rows of these columns must inducégg row vectors
that do not contain . But then c; and c,'s top n rows are bound to be identical, because
they contain only igg symbols di erent from and W is not permuted during the encoding
process. Since the tom rows of ¢; and ¢, are identical if they induce B, we can perform the
merge-operation. The rest of the argument is analogous to the proof of Theorem #1.

4.4. DISCUSSION AND FUTURE EXTENSIONS 53

A closer look at the proof of Lemma 4.18 shows that we can relax the conditionsniposed
upon B in that B need not be restricted to a width of 2 as long asv contains a column
vector that is induced at most once in the non-encoding part ofB. This directly leads to
Theorem 4.12.

Proof of Theorem 4.12 Recall the reduction from the proof of Lemma 4.18. The key
point was that after the reduction, B was not induced in the right part of A, designatedA,.
According to the prerequisites for this Theorem, the submatrix V of height r® has a column
vector v that is induced at most once in the non-encoding part ofB . Denote the r

2 submatrix of B that contains the v induced in the encoding and the one induced in
the non-encoding part of B by B., . If B, were the forbidden submatrix, we can|
as in Lemma 4.18|reduce r%Hitting Set to Row Deletion (B .). Now, consider the
following reduction to encode anr®Hitting Set instance into an Row Deletion (B)
instance: We simply use the algorithm from Lemma 4.18 and ., as the forbidden submatrix
but, instead of only writing the entries of B., into those rows of A determined by the
algorithm, we write the respective parts of the whole matrix B into A.

The reduction used in the above proof is illustrated by the following example, ery similar to

the example used to illustrate Lemma 4.17: Given the forbidden submatrixB = %géé

This is a maximal -Decomposition ofB with V.= 12 and =0. Note that|as required

by Theorem 4.12|the column vector } in V is induced just once in the non-encoding part
of B. Now, using the same instanc® of 2-Hitting Set as in the illustration of Lemma 4.17,
we generateA:

01212120000003131310000001
120000121200000000313100
001200120012000000000031
000000000012000000000000

0 000012001200000000000000 ¢= .
A= B000000000000310000000000 ¢=:
000000000000003100000000
000000000000000031000000
000000000000000000310000
000000000000000000003100
000000000000000000000031
Merging the appropriate columns, we obtain from this
01212120000003100001
120000121200003100
001200120012000031
000000000012000000
000012001200000000
A= 000000000000310000 .
000000000000000000
000000000000000000O0
000000000000003100
000000000000000000
0000000000O0O0OO0OOO031

Notice how after the merge-operation,B is not induced in the right part of A (the six
rightmost columns) but the inductions of B by columns in the left part of A®are preserved.

4.4 Discussion and Future Extensions

Theorems 4.11 to 4.14 have shown that for many forbidden submatrices, the falving con-
jecture holds true:

Conjecture 4.19 If r%is the height of the submatrixV in a -decomposition of the forbid-
den submatrixB, r%Hitting Set is parameter-preserving reducible taRow Deletion (B).

15Cc= ff 1;29;f1;39;f1;4g;f2;3g;f2;50;f3;499, S = 1;2;3;4;59, and k = 3.

54 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

Although we have proven many special cases of this conjecture (which is more thasu cient
for the discussion in this work), a general proof would provide a very intereshg structural
result. Ideas for a proof of the open problem would be an inductive extension of Lemen4.17
for more than one induction of V in the non-encoding part of a -Decomposition of B.
Another idea would be to nd a proof for the intuitive statement that if B contains a
submatrix B for which Row Deletion (B9 is known to be at least as hard as a certaird-
Hitting Set , then Row Deletion (B) is as hard asd-Hitting Set as well. The problem
in such proofs will most likely be to nd a way to write W and U of a given -Decomposition
into certain parts of A so that we can always be sure that an induction ofV is inhibited
in these parts. During the preparation of this work such a construction has been pssible
for many forbidden submatrices using the technique from Lemma 4.17 even if the fortdiden
submatrices did not ful Il the necessary prerequisites, so this should be a promisingtart
for a possible proof of the conjecture.

Note that|in accordance with the above conjecture|] Row Deletion (B) need not be NP-
hard for all non-trivial B, as the matrix B = () over the alphabet = f0;1g shows. To
see that this problem is solvable in polynomial time, observe that aB -free matrix A has the
property that all its columns consist either solely of 1's or solely of O's, ie., all rows of A are
identical.*® This implies that the minimum number of rows that need to be deleted in order
to make ann m-matrix B-free is equal ton X, where x denotes the size of the largest
set of identical rows in A, which can be determined in polynomial timel’

Another interesting area of research would be to close the relative hardness gdeft by the

results in this chapter: For anr s forbidden submatrix B with an r® s®submatrix V in the
maximal -Decomposition, we have shown in Section 4.2.1 thaRow Deletion (B) is not
harder to solve thanr-Hitting Set from a parameterized point of view. In this section we
have conjectured that it is at least as hard to solve ag “Hitting Set . But it seems likely
that there are more e cient (especially parameterized) algorithms for rHitting Set than

for r-Hitting Set whenr®<r |e.g., see Theorem 5.17 in the following chapter. It would

be interesting to nd out how this \gap" is closed and how this|if possible|can be rel ated
to the structure of B.

16 This was pointed out by my advisor Jiong Guo.
17Note, however, that Row Deletion (B)for B = % over the alphabet = fO0; 1g already is NP-complete
by Theorem 4.11, since B trivially has a 0-decomposition with V = B,and W = U = ;.

Chapter 5

Perfect Phylogeny Problems

This chapter shows an application of the previous chapter's analysis oRow Deletion
and Column Deletion problems in an area of biology commonly known as phylogenetics.
We will rst introduce the concept of phylogenetic trees, especially focusing on perfect
phylogenies. A phylogenetic tree is a tree that depicts the evolutionary history fom an
imaginary \ancestral species" to a given set of species. This requires ordering thepecies
depending on how closely they are related to each other (i.e., which sets of species have
taken separate evolutionary pathways earlier than others). Ordering in a phyl@eny is always
done according to a presumed model|in our case this is perfect phylogeny introduced in
Section 5.2. We will then nd out that the construction of a phylogenetic tree is only
possible whenlin a matrix representation of the input data|certain submatrices do not
appear. As it turns out, the problem of avoiding these submatrices by removing speciesr
some of their information from the data used to construct a perfect phylogeny, & exactly
the Row Deletion and Column Deletion problems analyzed in Chapter 4.

5.1 Phylogenetic Trees

5.1.1 Introduction and Motivation

Since Darwin introduced the theory of evolution, it has always been the desire of biogists
to infer the ancestral relationships of present-day species. Given a collection of spies,
a phylogenetic analysiswill try to determine their evolutionary relationship. This is done

by constructing a tree that displays the process of evolution as a sequence of branching
events; i.e., a common ancestor is divided into distinct species by a speciation ent. A
good general introduction to (computational) phylogeny may be found, e.g., in[DEKM98],
[Fels03], and [SeSt03]. Besides for applications like those mentioned in Secti@r8, the study
of phylogenetics is important to research on|often fundamental|questions in ar eas such
as conservation genetics, epidemology, ecology, medicine, and even non-biological elds of
research such as linguistics [SeSt03]. Before the availability of moleculatata, the infer-
ence of phylogenies was based on physical characteristics expressed by speti¢towever,

1As we will soon see, a group of species due to common physical characteristics is called a clade. There
are some views|such as in [KFHW98]|that the resulting trees of a clade-based analysis should be referred
to as a cladogram to distinguish it from an evolutionary tree which, in additi on, contains an implicit time
axis of speciation events.

55

56 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

the observation of physical characteristics is often quite misleading: E.g in 1952, Robert-
son and Reeve [RoRe52] performed a selection experiment to change the wing sinetwo
Drosophila populations. However, a closer examination revealed that whereas in one pop-
ulation the number of cells per wing increased, the other population developed larger g
cells, demonstrating a case ofiomoplasy’. Of course, a close examination of the wings would
have shown that obviously di erent genetic markups must be responsible for the epression
of a common characteristic, but there are more subtle examples. The main points that
physical characteristic are often subject to change due to selection processes antktefore,
although some species may show the same characteristics, this does not imply @sé ances-
tral relationship. As Page and Holmes stated in [PaH098]: homoplasy is a poor indicator
of evolutionary relationships, because similarity does nbre ect shared ancestry."

According to [SeSt03], the eld of phylogenetics \Wwas revolutionized by the arrival of molecu-
lar data" which allows a much better distinction of di erent evolutionary pathways t hat have
led to the expression of di erent characteristics: Each such pathway containsa multitude
of \genetic traces" called markers that may serve as an indicator for common or separate
paths of evolution. However, even with genetic data available, there are still ppblems phy-
logenetics has to deal with. For example, the problem of homoplasy as in th®rosophila
experiment of Robertson and Reeve can also be encountered at a genetic level if pratsifor
similar functions have evolved in di erent species. The most promising markergoday for
phylogenetic analysis seem to be SNPs as has already been mentioned in Chapter 2. Since
SNPs show very slow rates of mutations and the area around them is often highly coersved,
they are very well suited as a basis for inferring ancestral relationships; mosof the time,
only two di erent bases at a SNP site can be found throughout a population, which isthen
a good indicator for speciation events and common ancestral relationships.

This work will only be concerned with computational problems arising from the study of
so-called perfect phylogenies (a more thorough introduction to this model follas in the next
subsection), however, there is a multitude of other approaches such as \maximum likédood"

or \minimum parsimony". A more thorough introduction to these and some more distantly

related topics can be found, e.g., in [KFHW98] and [PaH098], which are not amuch focused
on computational biology as the references already recommended above.

5.1.2 Formal De nition

This subsection introduces the predominant phylogenetic model for this chapter, the spees-
character modef, which leads us to perfect phylogenies. A good survey article of problems
related to perfect phylogeny is, e.g., [Fern01]. In the species-character model, @aspecies is
described bym di erent characters Each character may take one of up to” di erent states
Let (i;j)2f0;:::;° 1g be the state of thejth character for the speciess;. Each species
is characterized by the states of itsm characters, we therefore introduce acharacter vector
for each species that is a row vector containing all the characters of a certainpgcies® For
convenience, the input data may be written as amn - m matrix A = (a;;) with a;; = (i;j),

2Formally, the term \homoplasy" refers to a correspondence b etween parts of an organism acquired due
to parallel evolution or convergence.

3 An indication for the importance of SNPs is that almost every article on evolutionary relationships in
widely recognized scientic magazines such as Nature or Science obtains its results from the analysis of
SNPs.

4Some literature also refers to this model as the cladistic model , where \clade" is de ned as a group of
biological species that includes all descendants of a commo n ancestor.

SFor example, if, for a species s;, we have (i;1)=1, (i;2)=2, (i;3)=3, (i;4)=2,and (i;5)=1,
its character vector would be (12321).

5.1. PHYLOGENETIC TREES 57

the character-state matrix. Each rowr; in A corresponds to the species; and the columng
to the jth character of all species. For example, if we have three speciss, s;, and s3 with
respective character vectors po701), (95142),and (36485), we would write

A=

wwoo

970
514
648

I

Note that there are variants of phylogenetic problems where not all entries ofA are known
(i.e., some states of some characters are missing). These entries wik bbepresented by a \?"
character®

The phylogenetic tree we seek to construct from the given species and character data is
called aperfect phylogeny which is the following tree-graph:

De nition 5.1 (Perfect Phylogeny)

Given a setSeys Of i species, each of which is described by exactly one ofli erent states for
each of its m characters. Let Sinernar b€ @ set of \ancestral” species (disjoint with Sig4¢) for
which we may assign character states. We then s& := Sigat [S internal - Atree T =(V;E)
is called a perfect phylogeny if it ful lls the following praperties:

1. T has|Sisrj leafs. There exists a bijection : S! V between the species ir and
the vertices of T such that every species fronS,; is mapped to a leaf inT and every
ancestral species is mapped to an internal node.

2. let § S be the set of species for which th¢th character takes state . Then,
forevery 1 | m and O <|,thesetf I(s)js2S; g of vertices forms a
connected component inT (in other words, all species that share a common state for
a certain character induce a subtree inT).

An example for a set of species and a perfect phylogeny for their characteristics igiven in
Figure 5.1.

In the introduction to this chapter, we have already mentioned the problem of homophsy
in phylogenetic analysis. In principle, a perfect phylogeny is a phylogenetic modahat does

not allow for homoplasy, leading to the elegant mathematical descriptions that ve have seen.
However, as Ferrandez-Baca observes in his survey [FernOl]elegance comes at a prick

and there are only very few examples in biology and linguistics where perfect phylanies
occur naturally (e.g., see [NRO99] and [BLMO03]). However, if we assume thabnly a very

few species or characters are violating a cladistic model in a given set of dat¢the analysis
from Section 5.4 onwards in this chapter will provide e cient algorithms and a complexity

analysis for nding and removing a minimal set of violating parts of the data.

Perfect Phylogeny is a special case of the so-calle@haracter Compatibility pro-
blem, introduced in [MeEs85]: For this problem, every character that satis es condiion 2 of
the above de nition (\all species that share a common state for a certain chaacter induce
a subtree in T") is called \true" (following [Esta78]). The Character Compatibility
problem then asks for amaximum number of characters to be true as opposed t®erfect
Phylogeny , whereall characters must be true.

6The problems associated with incomplete input data are usua lly harder than their equivalents with
complete data. E.g., the Undirected Perfect Phylogeny problem that will be introduced shortly is
already NP -complete for binary characters when the state of some chara cters is unknown [Stee92].

58 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

Example: speciess;;:::;sg and their characters:
S1: 2121 S2: 2131 S3: 1114
S4: 3412 Ss: 3413 Se: 4 413

Sinternal

species vertex

\

[2]1]2]1] [2][1]3]1] [3]4[1]2] [3]4]1[3] [4[4]1]3] [1]1][1]4]
S3 So Sq Ss5 S S3

SIeaf

L

Induced subtrees in the above perfect phylogeny :

4] : 4]
rst character second character third character fourth character

Figure 5.1: An example of a perfect phylogeny for a set of species: For six spiess;
through sg, four characters and their states are given. The treel = (V; E) then represents
a perfect phylogeny for these species (notice how all species that share a commoatst for
a certain character induce a subtree inT). The leafs in T each correspond to a species
from the set Siea¢ Of Species, the internal vertices to the seSinemar Of \ancestral” species.
Sometimes in literature, just the root of T is referred to as beingthe \ancestral species”.

5.2 Perfect Phylogeny Problems

There is quite a multitude of perfect phylogeny problems (see, for example, [BFW9R
[Gusf91], [PSSO0g], [PSS02]). This section introduces these problems, giving an overview of
the most important variants and related results concerning the computational canplexity.
As we will see, this complexity is mainly determined by the maximum number of di erent
states that characters may take.

The most general formulation of perfect phylogeny problems isk-Perfect Phylogeny

The input for a k-Perfect Phylogeny problem consists of a setS = fs;;:::;shg of n
species each described bym di erent characters where each character may take one ok
di erent states As was already explained on page 57, this instance is often given aska
ary n m matrix A. Seeingk as the classifying parameter, we directly obtain the de nition
of the k-Perfect Phylogeny problem:

De nition 5.2 (k-Perfect Phylogeny)
Input: Given a set S of n species, each of which described by exactly one &f di erent

5.2. PERFECT PHYLOGENY PROBLEMS 59

states for each of itsm characters.
Question: Does there exist a perfect phylogeny for the species iB?

Buneman demonstrated in [Bune74] that this problem is equivalent to a graph-theoretic
problem called Triangulating Colored Graphs . A graph is called triangulated if there
is no cycle of four or more vertices inG that does not induce a cycle of size 3 as a subgraph.
It is obvious that every graph can be triangulated by adding enough edges to it. Howver,
the Triangulating Colored Graphs problem asks whether a given graphG, where
each vertex is associated with one ok colors, can be triangulated by adding edges such
that the resulting graph has no edges between vertices of equal coldf this is possible, the
resulting graph is called properly colored triangulated We shall only sketch the idea behind
the reduction from k-Perfect Phylogeny to Triangulating Colored Graphs by
Buneman, more details may be found, e.g., in [Bune74] or [Fern01]. For the proofthe
character-state matrix A is rst transformed into a so-called character-state intersection
graph Ga. In this graph, each entry & of A corresponds to a vertex, the color of the
respective vertex represents the one df states found for theith species at itsj th character
in A. Two vertices are connected by an edge if their represented character states occur
together in a species. A theorem by Gavril [Gavr74] states that a triangulaed graph is the
intersection graph of a family of subtrees of a tree, leading to the result that a poperly
colored triangulated intersection graph represents a phylogenetic tree.

The equivalence ofk-Perfect Phylogeny and Triangulating Colored Graphs later
allowed Bodlaenderet al. to show that the k-Perfect Phylogeny problem isNP-complete
if k is not xed to a constant [BFW92]. If k is constant, for k = 3 k-Perfect Phylo-
geny is solvable in polynomial, i.e.,O(nm?) time according to [DrSt92]; for k = 4, [KaWa94]
provides anO(n?m) algorithm. Seeingk as a parameter,k-Perfect Phylogeny is xed-
parameter tractable and can be solved in0(4Xnm?) time [KaWa97] (a big improvement over
a previous algorithm stated in [AgFe93]).

Along with the NP-completeness proof fork-Perfect Phylogeny in [BFW92], another
result concerning k-Perfect Phylogeny on graphs with bounded treewidthwas shown.
Many hard graph problems become polynomially-time solvable on tree graphs For some
of these problems, this property can be used to develop e cient algorithms on graphswith
bounded treewidth.2 Roughly speaking, the treewidth of a graph is a measure of how
\treelike" the structure of a graph is. A tree-decomposition of a graph is a rooted tree
representation of the graph, that divides it into some subgraphs, the treewidth thenbecomes
a measure for the size of these subgraphs. If a problem is nite-state for bounded treedth,
it means that we can use the tree-decomposition of a graph to e ciently solve a had problem
on it by computing partial solutions for the children of each node of the tree stating from
the leafs, using the fact that a solution computed for the two children of an inner node
(which is from a nite set of possible solutions, hence the termnite state) can be used to
e ciently arrive at a solution for the inner node itself. However, it was shown in [BFW92]
that k-Perfect Phylogeny is not nite-state for bounded treewidth if k 4. This result
implies that for k 3, these dynamic programming strategies are not applicable.

In this work, we will mainly deal with the 2 -Perfect Phylogeny problem and therefore
use De nition 5.3 for means of abbreviation:

o a b . .
‘e.g., th h aé-c t lated whe t be the vert . b, dd
e.g e grap ’ IS trlianguial whereas d IKIC IS NO cause vertices a. c an

induce a cycle of size 4 which by itself contains no cycle of si ze 3 as a subgraph.
8For a more detailed survey on this topic, see, e.g., [BodI97] o r [BodI88].

60 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

De nition 5.3 (Perfect Phylogeny)
Input: An instance of 2-Perfect Phylogeny
Question: Does there exist a perfect phylogeny for the species i®?

The Perfect Phylogeny problem® may be reformulated as follows: For a set of species
with binary character states we wish to construct a phylogenetic tree, such that ér each
character, there exists at most one edge that partitions the tree into two subtees|one of
which has state 1, the other one state 0 for that character in every one of its ndes. Many
times in literature, the following variant of Perfect Phylogeny is discussed.

De nition 5.4 (Directed Perfect Phylogeny)

Input: An instance of 2-Perfect Phylogeny

Question: Does there exist a perfect phylogeny for the species & such that the root is the
all-zero vector?

The main di erence between (Undirected) Perfect Phylogeny and Directed Per-
fect Phylogeny lies in the fact that in Directed Perfect Phylogeny , we allow only
changes from 0 to 1 (i.e., the gaining of characters) throughout evolution. Gus elddemon-
strates in [Gusf91] that the Directed Perfect Phylogeny problem is by far easier than
generalk-Perfect Phylogeny to solve, it is in fact linear-time solvable with respect to the
size of the input matrix A (he furthermore gives a proof that this algorithm is time-optimal).

Since a linear time reduction from Directed Perfect Phylogeny to Perfect Phylo-
geny will follow from Theorem 5.7, (2-)Perfect Phylogeny is therefore also linear-time
solvable.

5.3 Relation to Forbidden Submatrix Problems

This section will show that we can easily determine whether a given binary species-chacter
matrix A implies that the represented species have evolved according to a perfect phylogeny.
This will be done by testing for the induction of a certain submatrix that must not be induced

in a perfect phylogeny. If we determine that the species have not evolved according to a
perfect phylogeny but assume that only a few characters or species in the dataset repmged
by A are responsible for this, we might try to delete as few rows or columns from as possible
(which is equivalent to removing species or characters from the dataset represesd by A)

in order to nd out which portion of the data ts a perfect phylogeny. This is a subm atrix
removal problem, leading us to the application of the results from Chapter 4 in the nex
section.

It is easy to determine whether the data represented by a given species-character matrik
allows for the construction of a perfect phylogeny by testing for the induction d the so-called
-matrix in ~ A.

Denition 5.5 (-Matrix): A binary matrix A is called -matrix 1°, if it is a permutation

9Sometimes Perfect Phylogeny is called Undirected Perfect Phylogeny in order to distinguish it
from the Directed Perfect Phylogeny problem we shall introduce shortly.

10The name for this matrix originates from [PSS02 ,]: When a binary n m character-state matrix A is
interpreted as the adjacency-matrix of a bipartite graph G = fV1;Vz;EQg, where V1 = fcq;:::;¢ng, Vo =
fs1;:::;smg and ¢ is connected with s; if and only if aj =1, the presence of a matrix leads to the

structure g (with the left vertices representing characters and the rig ht vertices states) in the graph

implicated by A, which looks like a mirrored .

5.3. RELATION TO FORBIDDEN SUBMATRIX PROBLEMS 61

of the 3 2 matrix

or

1 . e .
0 ,ie. itis equal to one of the matrices

, or

1
1
0

T
orpR
=)
T
=)
T
orpR
=)
orF
RO
T

The following theorem has been proven independently by many authors :

Theorem 5.6 [For a proof see, e.g., [Meac83] and [EJM75]] Given a binary baracter-state
matrix A. There exists a directed perfect phylogeny for the speciegpresented inA if and
only if A is -free.

Comparing Directed Perfect Phylogeny to Perfect Phylogeny , itis a very strong
assumption that characters as we have labeled them have only been gained throughout
evolution. This assumption is bound to fail often as labeling of the characterstates as 0
and 1 is arbitrary.* When given m characters, the generalPerfect Phylogeny problem
would allow 2™ choices for the character states in the root. Fortunately, if we do not
care about relabeling of the state labels, the following theorem by McMorrs (see page 135
of [Morr77] for the proof?) simpli es the choice of a root vector to a task that may be
performed in O(mn) time, i.e., linear time with respect to the size of the binary input
matrix A.

Theorem 5.7 [Morr77] If there is a perfect phylogeny for a binary matrix A, there is a
perfect phylogeny forA where each character in the root takes the state that the maijiby of
individuals takes for that character.

We can then simply invert all those characters where the proposed root containa 1 to obtain
a Directed Perfect Phylogeny instance from aPerfect Phylogeny one. However,
this inversion is only possible if certain conditions are satis ed by the input matrix A as
shall be explored in the next theorem. For this theorem, we will rely on the follaving
notation: We denote by L (M) an operation on a binary matrix M with two columns. The
operation L (M) inverts the left column. Analogously to this we de ne the operationsR(M)
(inverting the right column) and LR (M) (inverting the whole matrix). We immediately
observe that if M is a -matrix, then L(M), R(M), and LR (M) are not -matrices.
However, the restrictions of the following theorem apply.

De nition 5.8 (Extended -Matrix): A binary matrix A is called extended -matrix |,

or EM for short, if it is a permutation of the 4 2 matrix

(=]l gl
(=)l

Theorem 5.9 Let A be a binary matrix with two columns that induce a -matrix. Then A
can be made -free by column inversion if and only if those two columns do nibinduce an
extended -matrix.

Proof Let S(M) be the set of induced row-vectors in a binary matrix M . SinceA induces
a -matrix, there is a submatrix M induced by two columns of A that contains the row-
vectors (1; 1), (1;0) and (0;1). If M does not induce the row-vector (Q0), then

S(L(M)) = f(0;1);(0;0); (1;0)g;

11].e., losing a trait may also be considered as a \gain" of that particular loss in evolutionary history.
12Note that as in most older books concerning perfect phylogen ies, the terminology and notation used is
quite di erent from the one used today and in this work.

62 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

S(R(M)) = f(1;0); (1;1); (0;0)g and
S(LR (M)) = £(0;0); (0; 1); (1; 0)g:

None of the aboveS contains all row vectors of a -matrix|this immediately implies
that M can be made -free by any of the three inversion operations. If, however,S(M) =
f(0;0);(0;1); (1;0); (1; 1)g, then

S(L(M)) = (1;0);(1;1);(0;0);(0; 1)g;

S(R(M)) = f(0;1);(0;0); (1;1); (1;0)g and
S(LR (M)) = f(1;1);(1;0);(0; 1);(0; 0)g

meaning that M |and therefore A|cannot be made -free by inversion-operations on its
columns.

The question for a minimal column inversion does not seem to be very reasonablef it is
clear whether a trait has been gained or lost during the evolution of the given speciean
inversion of the respective column would not be appropriate with respect to is biological
implications|inversion of the character labels should come at no cost.

Having seen that a matrix cannot be made -free just by column inversion alone f it induces
an E M, the next two sections of this chapter will employ results from Chapter 4 to analyze
the computational complexity of removing a minimum number of rows or columns fran a
given binary matrix A such that the resulting matrix is E M-free.

5.4 Minimum Species Removal

When constructing a perfect phylogeny for a set of species|assuming that these have evekd
according to a perfect phylogeny|there might be a few species in the dataset that preven
such a construction. These species will therefore cause the induction of E Ms in the spcies-
character matrix, and must therefore be removed from the dataset in order to pemit the
construction of a perfect phylogeny for the remaining individuals. Since we assumehtt the
given species actuallyhave evolved in a perfect phylogeny, we require this removal to consist
of as few species as possible.

De nition 5.10 (Minimum Species Removal):

Input: A binary n m matrix M and an integer k.

Question: Is it possible to delete at mosk rows in M so that the resulting matrix is E M-
free?

As we can see from Theorem 5.9, the species must not induce any E Ms in the character-
species matrix A, since species/genotypes are rows i, Minimum Species Removal is
a Row Deletion problem with the EM as its forbidden submatrix. This immediately
leads to the following result:

Theorem 5.11 2-Hitting Set is parameter-preservingly reducible toMinimum Species
Removal .

5.4. MINIMUM SPECIES REMOVAL 63

[
a 111000100/
b 100110010
_ C 010101001 [jSj
C—ffa,bg,fg,cg,fa,dg,fb,cg,fb,eg,fc,dgg 4001001000
mit S= fa;b;c;d; g e 000010000
000000100 |
000000000
000000010
000000000
000000001 o
000000000 (>
000000000
000000000
000000000O
000000000 |
%K—J
iCj

Figure 5.2: Parameterized reduction of 2Hitting Set (Vertex Cover) to Minimum
Species Removal . An instance of 2Hitting Set is given as collectionC of two-element
subsets ofS, for illustration purposes, the equivalent Vertex Cover -graph G with an
optimal solution is also shown. The matrix on the right is an equivalentinstance ofMinimum
Species Removal to the given 2-Hitting Set instance.

1
Proof Follows directly from Theorem 4.12: Choosing 0 as , 3} is a maximal -

o
OO

decomposition for the EM where V := 1 is induced only once in the non-encoding
part (right column) of the decomposition. Since V has height 2, this theorem follows from
Theorem 4.12.

Figure 5.2 gives an example for a reduction of Hitting Set to Minimum Species Re-
moval . The above theorem also proves thatMinimum Species Removal is NP-hard.
Furthermore, Minimum Species Removal is NP-complete and xed-parameter tractable
by using Theorem 4.7.

Theorem 5.12 Minimum Species Removal can be parameter-preservingly reduced td-
Hitting Set

Proof Follows directly from Theorem 4.7. since the E M has four rows.

Note that this reduction does not directly yield an e cient algorithm for solving Minimum
Species Removal |a trivial search tree for 4 -Hitting Set has sizeO(4%), which grows
quite rapidly. A much better algorithm is given in [NiRo03 ;] which implies a search tree
size ofO(3:30¢). However, Minimum Species Removal can be solved even faster already
by a trivial algorithm, as the next theorem|Theorem 5.17|will show. For the pr oof of this
theorem, we will rst introduce two useful lemmata and some new notations.

In order to better analyze the size of a search tree, one can use the mathematical abof
recurrence analysis A detailed introduction to the analysis of recurrences can be found,

64 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

e.g., in [GKP94] and [GrKu90]. For our purposes, the following is crucial: Nd¢e that in
the search tree, each time we traverse an edgé, is decreased by one. For some problems,
however, it is possible to decreas& by more than one. This leads to the general notion of
a branching vector, sometimes also referred to as &ranching tuple

De nition 5.13 (Branching Vector)

If every node of a search treel’ branches into one ofs di erent subcases, and for each subcase,
we reduce the parameter by a respectivdy > 0, we call b:= (dz;:::;ds) the branching vector
for T.

The following result from recurrence analysis states that we can use the branchingector to
determine the size (b) of the corresponding search tree:

Lemma 5.14 [T|tc76] If a search tree has a branching vectob:= (dy;:::;ds), its total size
is (b= O(j*),where isthe solution ofz¢ z¢ & z4 9 =0 (whered = max d;)
I

with the largest absolute value (largest root, for short). h our context, this root is real.

For example, the trivial search tree for solving Vertex Cover in Section 3.3 branches
into two subcases at each node, each time reducing the parameter by one. Therefore, we
haves =2 and d; = d, = d = 1. The value of is therefore the largest root ofz* z° z°=

0) z 2=0, which is obviously 2. So, according to the above lemma, the search trefor
our trivial Vertex Cover algorithm has size O(2¥), in accordance with the observations
from Section 3.3. A second lemma by Kullmann (Lemma 8.5 of [Kull99]) allows uso make

a statement about the relative size of two trees by comparing their branching vectcs.

Lemma 5.15 [Kull99] Let there be given two branching vectordy = (d;;:::;ds) and b, =
(d9;:::5dY). If min(di;dp) > min(d9;d9), d; + dp df + d9, and for everyi > 2, we
haved, = d° then (b) < (b). This also holds true for any two positions that dier in
two branching vectors if all other positions are equal. Futhermore, (b) remains constant
whenb is permuted.

Corollary 5.16 Given a branching vectorb= (dy;:::;ds). Then, (b) < () wherelPis

[
the the branching vector d (s ;10
g vector(¢ Nk {Z_})

Proof Observe thatifa b>1, wehave (:::;a+1;:::;b 1;:::)> (a0, b))
due to Lemma 5.15, because then mirg+1;b 1) < mm(a b) and (a+ 1)+(b 1) = a+h
W.l.0.g., we can assume thatd; = max d; because Lemma 5.15 allows us to permute the

I
branching vector without changing the value of the respective .
From this observation we can see by repeated application of Lemma 5.15 that

x
(d (s 1Ly 1> (d (s 1) L2L ;1>

> (d (s 1) 231 ;1> > (d (s 1) (d 1);dy1 ;1)>

5.4. MINIMUM SPECIES REMOVAL 65
> > (d (s 1) (2 1) (d 1idyds; 1)> >

x
> (d& (s 1) (di 1);d;ds; 5ds) =
i=1 i=2
= (dp (s 1)+(s 1)dyds; ;ds)= (di;do;ds; ;5 ds):

Note that this lemma demonstrates how a tree gets larger the more \unbalanced" it §.

Using the last corollary and Lemma 5.14, we can now show that the trivial garch tree
algorithm for Minimum Species Removal has a search tree of siz©(3%).

Theorem 5.17 There exists a xed-parameter algorithm for Minimum Species Removal
with a search tree of sizeO(3¥).

Proof Let (A;k) be a given instance ofMinimum Species Removal . We will construct a

simple algorithm for solving Minimum Species Removal , analogously to the one that was
used to solveVertex Cover in Section 3.3: Looking for E Ms in the input matrix A, each
time an induction of an E M is encountered in two columns c¢; and ¢, of A, the algorithm

branches into four cases:

l. Delete all i;; rows in A that induce the row vector (11) in ¢; and ¢y, obtaining A°.
Then, proceed with the algorithm on (A%k iq9).

Il. Delete all i1o rows in A that induce the row vector (10) in ¢; and c,, obtaining A°
Then, proceed with the algorithm on (A%k i1g).

IIl. Delete all ip; rows in A that induce the row vector (01) in ¢; and ¢, obtaining A°,
Then, proceed with the algorithm on (A%k i¢1).

IV. Delete all iy rows in A that induce the row vector (00) in ¢; and c,, obtaining A°,
Then, proceed with the algorithm on (A%k ig).

The corresponding search tree has size(ii11;i10;i01;i00)- From Corollary 5.16, we know
that

(i11;11050015000) < (i12+ P10+ i1+ 000 3L L 1)
Note that for any two columns ¢; and ¢, in the input matrix A, any row vector induced by
these two columns is either 1 1), (10), (01), or (00). Therefore,iis + i1g+ ig1 + igg = N
(where n is the height of A) and

(i11;11050015000) < (N 3L 11)

By using Lemma 5.14, we can deduce from this that the size of the trivial searchree is
bounded by O(¥), where is the largest root of

n 3 n 31

z n 3 (n 3

z z "3t M 3l=0=) 3% 3" 4 1=0

The largest real root of this polynomial is smaller than 3 + 51 because forz > 3+ 31,

we have
1 n 3 1 n 4
3 4
z" 32" 1> 3+3n—4 3 3+3n 7

66 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

_ o334y "B 3341 "t e MY 3 34 _
= T S i 1= —a BT 1=
o33+ MY o334y 3 3 3341 "t _
= T v 17 33 3 a 17
3n 3+1 n 4 1 n 4
W 1:|1+{W} 1>0
z
>1

Now, assumingk n 42 we obtain

1 1
< 3+ E) 3+ x
Using k > 0 =) 3% < 0:125 () and the well-known inequality 0 <i < 1;n > 0 =)
@1+)" €"(), we obtain from this

1
k™ k

1 1 1 ()
< 8+ x=3 ltgar =8 1oy

3 ewT < 3 015 ko3 op14t:
k
This implies a search tree size oD(3 1:14c)= O(3% 1:14) = O(3¥).

As we have seenMinimum Species Removal can be solved using a search tree of size
O(3¥)|this narrows the gap between the minimum hardness boundary for Minimum Spe-
cies Removal that has been shown at the beginning of this sectiotf' and the best algorithm
for Minimum Species Removal . However, more research would be needed to determine
whether this gap can be narrowed even further to bring the computational complexity of
Minimum Species Removal even closer toVertex Cover , which we have proven to be
a lower computational complexity bound for this problem.

5.5 Minimum Character Removal

Instead of looking for the minimum number of species that prevent the construction 6 a

phylogeny from the given dataset, one might also be interested in the minimam number of

sites responsible for these conicts (by inducing E Ms). This problem is formally stated

in De nition 5.18, using n as the number of species andn as the number of considered
characters for each species.

De nition 5.18 (Minimum Character Removal):

Input: A binary n m matrix A and an integerk.

Question: Is it possible to delete at mostk columns in A so that the resulting matrix is
E M-free?

130bserve that if k>n 4, we can use anO(n?) algorithm to try all combinations of three rows that are
not deleted from the input matrix in order to make it -free.
14Recall that this was the Vertex Cover , or 2-Hitting Set problem.

5.5. MINIMUM CHARACTER REMOVAL 67

Using the general framework given in Section 4.2.1, the following algoritm e ciently nds
all pairs of columns in a givenn m input matrix A that induce an EM in O(n?m) time,
leading to an instance of2-Hitting Set . For the algorithm, let ¢ denote theith column
of the input matrix A.

Algorithm: Finding all E M inducing columns

Input: A binary n m matrix A

Output: A set C containing all pairs of
columns in A that induce an EM

or C ;

02 for i 1:::ndo

03 for j i+1:::ndo

04 vl, v2, v3,v4 false

05 for | 1:::mdo

06 if (ai;a;)=(1;1)then vl true
07 if (ai;a;)=(1;0)then v2 true
08 if (aj;a;)=(0;1)then v3 true
09 if (ai;a;)=(0;0)then v4 true
10 if vl, v2, v3,and v4 are all true then
11 C CI[f (a:iqg)g

12 return C

As was already mentioned, the constant in theO-notation of the given algorithm is much
smaller than the one implied by the general algorithm given in Section 4.2.1 dued the fact
that in lines 06 to 09, we only check whether all four row vectors induced by an EM are
present in a pair of columns inAlan important performance gain for practical applications.

The equivalence ofMinimum Character Removal to 2-Hitting Set is directly given
by the results from Chapter 4:

Theorem 5.19 Minimum Character Removal is parameter-equivalent to 2-Hitting
Set.

Proof The results of Chapter 4 that concernedRow Deletion also hold|for reasons

of symmetry|for Column Deletion problems. According to Theorem 4.7, Minimum

Character Removal is parameter-preservingly reducible to2-Hitting Set . Since the
row vector (1 1) is only induced once in an E M, we can deduce from Theorem 4.12 that2-
Hitting Set is also parameter-preservingly reducible taVlinimum Character Removal

(The latter reduction is illustrated in Figure 5.3.)

The Vertex Cover problem (equivalent to 2-Hitting Set) which we have introduced in
Chapter 3 and already mentioned in the last section is probably the best analyzed proleim
in parameterized complexity theory. Successive improvements of parameterized algtrms
for this problem have led to algorithms with a O(1:2% + km) worst-case running time (see
[NiR003,] and [CKJO01]). Combining this algorithm with the parameterized reduction from
Minimum Character Removal to 2-Hitting Set given at the beginning of this section
(which runs in O(m?n) time), we obtain corollary 5.20.

Corollary 5.20 Minimum Character Removal can be solved inO(m?n + 1:29% + km)
running time.

68 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

C=ff a;g;fajeg;fa;dg;fb; o, fb; eg; fc;dg; g

[ole]elolololelolalalalolel el el Jdel el Jdo]]

[coocoororororoocococoococooor o
[6ForocococoocorFroo0ocorFoc0 00| 6 |
[corroococos000ocorFPc0005000| o |
CO00OOORRE000000O00n000| ¢

Figure 5.3: An instance of 2-Hitting Set and the correspondingMinimum Character
Removal problem. For illustration purposes, the 2-Hitting Set problem is shown with
its corresponding Vertex Cover instance. An optimal solution is marked in the graph
and the binary matrix.

Proof The running time is obtained by adding the running time given in [NiRo03,] for
solving the Vertex Cover problem to the running time required for the reduction from
Minimum Character Removal to Vertex Cover

This directly implies that Minimum Character Removal can be solved e ciently in
practice for a reasonable dataset: If a number of species evolved according to a pbgknetic
model, then the number of characters that contradict this model (i.e., k) should be rela-
tively small. On the downside, the very close relationship betweerMinimum Character
Removal and 2-Hitting Set implied by Theorem 5.19 combined with the fact that the
known algorithms for Vertex Cover might not be improved much further suggests that
it might not be possible to solve Minimum Character Removal much faster than with
the given O(m?2n + 1:29 + km)-algorithm.

This chapter concludes the rst part of this work dealing with forbidden submatrix problem s
and their application in the inference of phylogenies. The next two chapters will be concered
with another set of interesting problems that arise when we try to obtain SNP data from
the genetic information of an organism. Just as the problem of inferring perfecphylogenies
led to the more general problem of submatrix removal, the problems arising in SNRnalysis
can be related to a problem calledGraph Bipartization

Chapter 6

Graph Bipartization

The preceding two chapters have analyzed forbidden submatrix problems and their rela-
tionship to Perfect Phylogeny problems. We have already mentioned that among their
many qualities, SNPs seem to be a promising source for data that can be used torsiruct
perfect phylogenies. This and the following chapter are more directly concerned with SRs
in that they will deal with computational problems that arise during actually obtaining SNP
data. This chapter introduces the Graph Bipartization problem, which we shall show|in
Chapter 7|to be closely linked to problems arising in the acquisition of SNP data .

Graph Bipartization is the following problem: Given a graph G, remove as few vertices
(or edges) as possible from it so that it becomes bipartité. Bipartization by either vertex-
or edge-deletion isNP-complete [Yann81]. However, making use of the fact that in our
applications|those presented in Chapter 7|the graphs that we are to bipartize will m ost
likely be rather small and \almost" bipartite, we develop an exact algorithm for solving

Graph Bipartization on these graphs. An implementation of this algorithm is presented
in Section 6.4. In this section, we also test the algorithm on random graphs,eing that the
Graph Bipartization problem is already intractable for moderately sizedrandom graphs.

However, as will be shown in Section 7.4 of the next chapter, the developed algthims
generally allow the bipartization of graphs obtained during SNP analysis even if hey contain
a few hundred vertices.

6.1 Introduction and Known Results

Besides its applications in computational biology|some of which are presented in Chap-
ter 7|the task of bipartizing a graph is also important for a range of non-bio logical problems
such as, e.g., VLSI chip design [CRS94]. The reason for this is that many pbdems can be
traced back to so calledcon ict-graphs, where the vertices of a graph represent certain data
and edges represent data-dependencies. The presence of odd cycles (later in this section we
show that a graph is bipartite if and only if it does not contain such cycles) in the con ict-
graph indicates that certain data-dependencies contradict each other. For example|as is
explained in more detail in Chapter 7|the bipartiteness of a graph constructed from a
set of given genotypes determines whether this set of genotypes can be resolved into the
underlying haplotypes. Logically, if data conicts are presumed to be present in a setof

1\Bipartiteness" is de ned in Section 3.1.

69

70 CHAPTER 6. GRAPH BIPARTIZATION

A graph G G bipartized G bipartized by
by deleting six edges deleting three vertices

Figure 6.1: A graph G and its optimal bipartization by edge and vertex deletion. The
bipartiteness of the middle and right graph are illustrated by coloring the vertices black and
grey such that no two equally shaded vertices are connected by an edge. Notice that such
a shading is not possible for the graph on the left, since it contains cycles of odténgth

(e.g., 3).

data only due to some aws (e.g., read or measurement errors), the question faa low-cost
way to bipartize the given graph directly arises. We may de ne bipartization in two ways,
formulating the Edge Bipartization and the Vertex Bipartization problem.

De nition 6.1 (Edge Bipartization Problem)
Input: Given a graphG = (V;E) and an integer k.
Question: Can G be made bipartite (i.e., free of odd cycles) by deleting at st k edges?

De nition 6.2 (Vertex Bipartization Problem)
Input: Given a graphG = (V;E) and an integer k.
Question: Can G be made bipartite (i.e., free of odd cycles) by deleting at nab k vertices?

By Graph Bipartization we will denote a problem that is either Edge Bipartization
or Vertex Bipartization

An example for both Edge Bipartization and Vertex Bipartization is given in Fig-
ure 6.1. The key graph-theoretic idea behind bipartization of a given graph is that agraph
is bipartite if and only if it does not contain any odd cycles (see, e.g., the biparized graph
in Figure 6.1): Assume that a given graphG = (Vi; V,; E) is bipartite and has an odd cycle.
Since G contains only edges between vertices iV, and V,, if the cycle has an odd length
and starts at a vertex in Vy, it would end in a vertex in V,, which clearly cannot be. Now
assume that a graph has no odd cycles. Then we can simply put an arbitrary vertex o6

into the rst partition, all of its neighbors in the second, the neighbors of t he neighbors in
the rst again and so on. Assume now that there are two verticesu and v in G that are

connected by an edgee and have been put into the same partition (which would inhibit the

partitioning process). Then, there is a path p from u to v of even length in the already
partitioned graph because the already partitioned graph is connected. Since connectsu

and v, p and e form an odd cycle in the graph, a contradiction.

Both Edge Bipartization and Vertex Bipartization have been proven to beNP-
complete (e.g., see [Yann78], [Yann81] and [LeYa80]) for general graphs. Forgplar graphs,
Edge Bipartization is solvable in polynomial time [Hadl75] whereasVertex Biparti-
zation on planar graphs is generallyNP-complete (it becomes solvable in polynomial time
when the maximum vertex degree does not exceed 3) [CNR89, Karp72]. For any graph, we

6.1. INTRODUCTION AND KNOWN RESULTS 71

can nd a set of edges in polynomial time that is larger by a factor of at mostO(logjVj) com-
pared to the smallest possible set of edgéshat bipartizes a given graph [GVY96]. However,
it has been demonstrated in [PaYa91] that both Edge Bipartization and Vertex Bi-
partization are MAX-SNP -hard?, meaning that there is no PTAS* for these two problems
unlessP = NP [ALMSS92]. It remains an open question whetherGraph Bipartization
problems can be approximated within a constant factor [GVY96].

The xed-parameter tractability of Edge Bipartization and Vertex Bipartization is an
open question. A conjecture by Khot and Raman [KhRa02] concerningrarametric duality®
states that for NP-complete problems that are in FPT, their parametric dual is often not
in FPT. This is however a simply empirical observation that should at most be taken a a
hint.

Vertex Bipartization has a parametric dual calledMaxCut

De nition 6.3 (MaxCut Problem)

Input: A graph G = (V;E) and a parameterk.

Question: Can V be partitioned into two disjoint subsetsV; and V, such that there are at
leastk edges inG from vertices in V; to vertices in V,?

The xed-parameter tractability of MaxCut is shown through a reduction to Max2Sat
(e.g., see [PoTu95] for details).

De nition 6.4 (Max2Sat Problem)
Input: A boolean formulaF in 2-CNF and a parameter k.°
Question: Are k or more clauses inF satis able?

It is obvious that if a graph can be bipartized by deleting at most k edges from it, it has
a maximum cut of size at leastjEj k. An instance of MaxCut is reduced to Max2Sat

edgeg = fva;vpg, whereCj, = ("a_"p)and Cj» =(: "a_: "p). By developing an algorithm
to solve Max2Sat with n clauses inn®® 1:15" time, Gramm, Hirsch, Niedermeier and
Rossmanith [GHNRO3] have also provided am®® 1:26™ algorithm for solving MaxCut
on a graph with m edges. In the practical test of the developed branch&bound algorithms
for Vertex Bipartization and Edge Bipartization in (Sections 6.4 and 7.4), we will
use aMax2Sat -solving program developed by Gramm to compare our algorithms against.

In the above de nition of Vertex Bipartization and Edge Bipartization , both prob-
lems were given aglecision problems. However, in the next chapter, we will be interested in

2The optimization variants of Graph Bipartization problems will be introduced shortly.

3Note that second part of the name for this class is an abbrevia tion for \Strict NP" and has no connection
with SNPs. It is therefore pronounced \S-N-P" instead of \Sn ip". More information on the class MAX-SNP
can be found, e.g., in Chapter 13 of [Papa94].

4PTAS stands for \Polynomial Time Approximation Scheme". An approximation scheme for a problem P
is a set of approximation algorithms A , > 0, where the algorithm A approximates P to a factor of 1+
If every A has a running time that is polynomial with respect to the inpu t length, we are referring to a
polynomial time approximation scheme.

SFor a parameterized language L1, its parametric dual is L, := f(x;k) j (x;jxj k) 2 L 1g. For more
details, see, e.g. [PrSIO3].

6A boolean formula is in 2-CNF, if it can be written as ("1 _ 2) ~ (3 _ "4)::: where the ; are either
boolean literals or their negation. A good introduction to b oolean formulas and boolean logic may be found,
e.g., in Chapter 4 of [Papa94]

72 CHAPTER 6. GRAPH BIPARTIZATION

nding a minimum number of edges or vertices to bipartize a given graph, i.e., the smalledt
for which Graph Bipartization returns \ Yes" on a given graph.

De nition 6.5 (opt-Edge Bipartization Problem)
Input: Given a graph G = (V;E).
Output: The smallest integerk for which (G;k) 2 Edge Bipartization

De nition 6.6 (opt-Vertex Bipartization Problem)
Input: Given a graph G = (V; E).
Output: The smallest integerk for which (G; k) 2 Vertex Bipartization

By opt-Graph Bipartization we denote a problem that is eitheropt-Edge Biparti-
zation or opt-Vertex Bipartization . Note that any algorithm solving opt-Graph
Bipartization can be used to solveGraph Bipartization as well (for a given input
graph G, simply calculate the optimal k and output \ Yes", if for a given k° k® k) and
the running time of an algorithm for opt-Graph Bipartization is at most polynomially
worse than the running time for the respective Graph Bipartization problem.’

6.2 A Parameter-Preserving Reduction from Edge Bi-
partization to Vertex Bipartization

Using a parameter-preserving reduction, this section shows thawertex Bipartization

is at least as hard to solve asEdge Bipartization . It should be noted that this proof
supports the general observation from [Yann81] that vertex-deletion problems in oler to
achieve a certain graph-property generally appear to be harder than their edge-deletion
equivalents.

Theorem 6.7 Edge Bipartization is parameter-preserving reducible toVertex Bipar-
tization

Proof Let G; =(V1;E1) be an instance ofEdge Bipartization and G, = (V; E,) be the

parameter-equivalent instance ofVertex Bipartization we wish to construct. Let V; =
fvi;:iii;vangand E; = feq;:::;eng. The new graph G, will consist of two di erent types of
vertices:

Type |: This set containsk + 1 duplicates of every vertex in Vi:
Vi="fu; jvi2Vy;0) kg
Type Il : This set contains two vertices for every edge irE;:
Vi = fwwoje 2 Elg

Having de ned these sets of vertices, we seY, := V, [V. Note that vertices of type | are
all named by au and those of typell by a w. The edges inE; also consist of two sets:

7l.e., if there is an algorithm for Vertex Bipartization , we can test for all O k j Vj on a given
graph G whether (G;k) 2 Vertex Bipartization and output the smallest k for which this is true.

6.2. REDUCING EDGE BIPARTIZATION TO VERTEX BIPARTIZATION 73

o)
% 0 o o
o © ©
O O
0000
o o)
o° % ©
© O O "oy
The original graph G; The vertices of V,
for construction of G, (k = 3 in this example)

Vertex-Types:

o: Type |
o: Type ll
Edge-Types:
) - Type |
G, with all edges and —: Type Il
vertices from E, and V,
Figure 6.2: Construction of a Vertex Bipartization instance from an Edge Biparti-
zation instance. On the top left, we see the original graph that is an input for Vertex
Bipartization . Then, on the top right, the vertices from the set V| and V, (see text for

details) are displayed. The nal output graph of the reduction, where also all edges from
the setsE, and E;; (again, see text for details) have been added, is shown. Note that al-
though the deletion of one single edge would be su cient to bipartizeG, we setk = 3 in this
example to better illustrate the duplication of the vertices in G; by the vertices of type I.

E,: For each edge in the original graph, there is a pair of vertices of typdl . Each
such pair is connected by an edge from this set:

E,=ffw;wogje 2E; g

E; : Note that E, contains an edge for every edge ifE;. If two vertices in G; were
connected by an edges, then E;; will connect the corresponding vertices inV, using
the edgefw-1; w29 2 E;:

Eu = ffuy;wigfup;wogje =fvy;vpg2E;;0 j kg

In analogy to the vertices in V,, we setE, := E,; [E;. Figure 6.2 gives an example for the
construction of G,.

The idea behind the reduction is as follows: If two verticesv, and vy, are directly connected
in Gy by an edgee, they are now connected by a pathug w-1w-,uy; of length 3 in G,. Note
that this conserves all odd and even cycles, for an even cycle of lengtm2s now represented
as an even cycle of length 32n = 6n and an odd cycle of length 2 + 1 as an odd cycle of
length 3 (2n + 1) =6 n + 3. Deleting either w-; or w-, from the path directly corresponds
to the deletion of an edge inG; concerning the destruction of cycles. Note that ifV, were to
contain less thank duplicates of every vertex fromVy, an algorithm that solves the Vertex
Bipartization problem on G, might also consider deleting all of the vertices inV, that

74 CHAPTER 6. GRAPH BIPARTIZATION

correspond to a certainv; 2 V; in order to destroy an odd cycle|an operation for which
there is no equivalent edge deletion. Thek + 1 duplicates therefore \secure" each vertex
from deletion. It remains to be shown that the duplication process conserves all cyclefsom
G; in Gy:

For any vertex u; 2 V, let S := fu; jO | kg. Then for any Sj, N(S;) shall be
de ned as the set of vertices adjacent to all vertices inS;.2 We now prove that any path
between a vertexw 2 N (S;) and w2 N (S;) that contains solely vertices from S; and N (S;)
is of even length (). This is not hard to show since such a pathp of length | between a
vertex w 2 N(S;) and w®2 N (S;) that contains solely vertices from S; and N (S;) can be
decomposed intop = WS;X1SpX> ! Xy 1s%wo where allx 2 N(Sj) and all s2 S;. Thus, |
must be even.

We now show that (G1; k) 2 Edge Bipartization . (G2;k) 2 Vertex Bipartization

\) " Assume that G; can be bipartized by deleting at mostk edges, yieldingG§. Then,
for each of those edge®, we delete one of the corresponding verticesr in G, (see the
De nition of V). Now, assume that after this deletion process, there is still an odd cycle
in G,. This cycle ¢ must contain a vertex of type Il because by (), cycles containing just
vertices of type | are even. Call this vertexw.. The cycle c may be interpreted as a pathp
of odd length in G, from a vertex w, to itself. This path will contain edges of both types |
and Il. It follows from () that there is an even number of edges of typdl in p. After
having deleted the vertices inG, that corresponded to edges deleted ir5;, there is exactly
one edge of typdl in G, for every edge inG$. Thus, if cis odd, the number of edges of type
Il in p must also be odd sinceE, ;= E, [E;, and the other edge types are present an even
number of times. This however implies that there is an odd cycle inG¢, a contradiction to
our initial assumption that G is bipartite.

\(" Assume that we can bipartize G, by deleting at most k vertices from it, yielding GS.
The following can be seen from the construction: If an odd cycle was induced in the aginal
graph G, it will be induced in G, and contain vertices of both types!| and Il . It is then
impossible to bipartize G, by deleting vertices of type |, because for each vertex that was
part of the odd cycle in Gy, there are now k + 1) copies present inG,. We may therefore
assume w.l.o.g. that only vertices of typell are removed fromG,. Removing a vertex of
type Il from G, will implicitly delete an edge from E,. Each edge inE, corresponds to
exactly one edge inG;. Now, delete all edges inG; corresponding to the vertices that were
removed in G, obtaining GY. If this does not bipartize G; (as we intend), this means that
there is still an odd cycle|call this cycle c|presentin GY. However, then those edges irE,
that correspond to the edges inc are still present in GJ. The vertices of type Il in G
adjacent to those edges can therefore not have been removed froB,. But if, for the odd
cycle ¢, none of the corresponding edges or vertices have been removedG3, G, must also
contain that odd cycle and therefore cannot be bipartite|a contradiction.

Performing the construction of G, requiresO(jE1j+(k+1) jVij) O(Eij+ jE1j jVij) time
for adding the vertices andO(JE1j + (2k +2) jVij) O(E1j + 2jE1jjV4j) time for the edge
construction|it can thus be carried out in polynomial time. Note that the param eter k is
directly preserved by the reduction.

The theorem implies that, from a parameterized point of view, Vertex Bipartization is
at least as hard to solve asEdge Bipartization

8Note that for any Si, N(Sj) V; and that if a vertex is adjacent to one vertex in S;, it is adjacent to
all vertices in S; due to the construction.

6.3. A BRANCH&BOUND APPROACH 75

6.3 A Branch&Bound Approach

As was mentioned in Section 6.1, this section will develop algorithms for dwing the opti-
mization variant of a given Graph Bipartization problem.

Having shown that Vertex Bipartization and Edge Bipartization are NP-complete,
not approximable within a constant factor, and might not even be xed-parameter tr actable,
we also know that the respective optimization variantsopt-Edge Bipartization and opt-
Vertex Bipartization are also hard to solve. In this section, we will develop e cient
algorithms for opt-Graph Bipartization using a technique known asranch&boundbased
on the idea that for the applications developed in Chapter 7, the given input graphs should
be relatively small and \almost bipartite."

Branch&bound works as follows: As was noted in Chapter 3NP-complete problems can be
solved by a computer that correctly guesses a solution to the problem and then determinis
tically veri es it. As we do not have access to a machine with such \oracle" capabitties, we
have to try all possible solutions|branch&bound is, in a way, an attempt to p erform this
trial and error procedure more \intelligently."

We shall illustrate the principle of branch&bound using opt-Vertex Bipartization as an
example. For a givenopt-Vertex Bipartization instance, trying all possible solutions
means we have to nd all possibilities to bipartize G and see which is the minimal number of
vertices necessary to bipartizeG. There are 2Vi subgraphs induced byG, as each vertex can
either be deleted or kept in the graph. Bipartizing the graph by deleting vertices is equivéent
to looking for an induced bipartite subgraph in G that contains as many vertices as possible.

the following algorithm to generate all 2Vi = 2" subgraphs ofG by a branching algorithm
similar to the one introduced in Section 3.3: We select a vertex from G and branch into
two subcases, where in the rst subcaser is kept in the graph and in the second cases
is removed from G. For the resulting subgraphs, the algorithm is applied recursively (note
that once we have decided to keep in the graph, it cannot be removed by the algorithm
on the resulting subgraph). Initially, the algorithm is called with G and n as inputs.

Algorithm: Enumerating subgraphs
Input: A graph G = (V; E) with labeled vertices

Output: All 2" induced subgraphs ofG

o1 if i =0 then

02 output G

03 call this algorithm with G andi 1 as inputs

04 call this algorithm with Gnfvigandi 1 as inputs

Observe that this algorithm can be depicted in a search tree structure as in Section.3. In
order to nd an optimal solution to opt-Vertex Bipartization on G we have to look for
a leaf in the tree that yields a bipartite graph with as many vertices as posible. So far, the
branch&bound search seems just to be a trial and error approach with exponentiatunning
time. We will not be able to loose the exponential worst-case running time, howver, there
are two ways to (hopefully signi cantly) speed up our search:

The key to branch&bound is the following idea: If a partial solution cannot do better
than the best solution so far it is not further explored in the search tree. Assune

76 CHAPTER 6. GRAPH BIPARTIZATION

that we have already found a solution to opt-Vertex Bipartization on G that
uses onlyi < n vertices. If we are at an inner nodeN in the tree where we have
already deletedi vertices from G, the solutions generated by traversing further into
the tree from N can never be better than the one we have already found. We therefore
do not need to traverse into that subtree and can directly look at another branch in
the tree leaving from N's parent node. By always keeping the best solution found
so far in memory, we therefore do not need to traverse the whole tree to see if ther
is a better one, but only look into \promising" solutions. In order to further sp eed
up the search in its initial phase, aheuristic is employed to get a (hopefully good)
initial solution. A heuristic ° is an algorithm that nds a solution to a problem but
does not guarantee optimality® Special heuristics foropt-Edge Bipartization and
opt-Vertex Bipartization will be developed later on in this chapter.

There are possibly certain structures in the graphG for which we can deterministically
predict how they will be solved in an optimal solution to opt-Vertex Bipartization

on G. For example, vertices of degree 1 cannot be part of a cycle and therefore do not
need to be considered for deletion when traversing the search tree. We refer to such
operations asdata reduction. We can \pre-solve" such structures before performing
the actual branch&bound procedure, thereby reducing the amount of input data. Data
reduction can also be employed during the search tree traversal.

Using these techniques, we can generally|but without any guarantees|speed up an exhaus-
tive search for an optimal solution to opt-Graph Bipartization on G. This is exactly
what we will later see in the implementation of the algorithms in Sections 64 and 7.4:
While the algorithms are generally too slow to bipartize random graphs even ofnoderate
size and average vertex degree, they are generally capable of solvi@gaph Bipartization

for graphs from SNP analysis even if these graphs contain a few hundred verticés.

The development of an e cient branch&bound algorithm for opt-Graph Bipartization

is divided into the following two subsections: The next subsection will present the heustics
for obtaining the initial bound for the respective opt-Graph Bipartization problem,
followed by the subsection presenting the data reduction rules applied. An implementatin
of the developed algorithms in the Java programming language is presented and analyzed
in Section 6.4.

6.3.1 Initial Heuristics

For the opt-Edge Bipartization -heuristic we will use an algorithm developed by Schreder,
May, Vrto, and Sykora [SMVS97]12. This algorithm is very e cient, easy to implement,
and|according to [SMVS97]|often produces results that are very close to the optimal
solution (although there is no guarantee for the quality of the solution). The algorithm
works as follows on a given graphG: First, the vertices of G are colored randomly red and
blue. Then, as long as there is a vertex in G that has more neighbors colored equally to it

9The word heuristic originates from the greek word , meaning \to discover."

10There are many heuristics|including the ones that we will us e|that do not make statements even
about how close the generated solution is to an optimal one.

11 The signi cance of this result will become clear later in thi s section when discussing Reduction Rule 3:
A complete enumeration of all possible solutions to a Graph Bipartization problem would have to consider
over 2100 < 1030 subgraphs for a graph containing 100 vertices.

12The title of this paper, \Approximation algorithms for the V ertex Bipartization Problem", is quite
misleading as this paper only deals with heuristics for Edge Bipartization

6.3. A BRANCH&BOUND APPROACH 77

|

ot
ot

initial graph G randomly colored G

|

45h
b %
G 4 9

no further improvement
possible by recoloring

Figure 6.3: lllustration of the recoloring heuristic for Edge Bipartization used to obtain
an upper bound for the branch&bound algorithm. Starting with a randomly colored graph,
if there are vertices in G whose recoloring reduces the number of con ict edges i, these
vertices are recolored. The detailed algorithm is provided in the text. Note thatthe recolor-
ing heuristic yields a suboptimal solution (six edges instead of four) tdedge Bipartization

in this example.

than neighbors colored di erently to it, the respective v is recolored (hence, this algorithm
is referred to as therecoloring heuristic for Edge Bipartization). We will refer to an edge
that connects two equally colored vertices as acon ict edge. Written in pseudocode, the
algorithm looks like this:

Algorithm: Recoloring heuristic for Edge Bipartization from [SMVS97]
Input: A graph G =(V;E)
Output: An upper bound for Edge Bipartization on G

01 randomly color vertices in G red or blue

02 while there is a vertexv in G with more neighbors
colored equally than di erently to it do

03 change the color ofv

04 return number of conict edges in G

The algorithm's worst-case running time is bounded byO(jV]j jEj) since each execution of
line 03 decreases the total number of con ict edges in the graph by at least one. However,
practical performance of the algorithm (see Section 6.4) has shown to be a Idietter than

78 CHAPTER 6. GRAPH BIPARTIZATION

suggested by this bound. The algorithm is illustrated in Figure 6.3.

The heuristic for determining the upper bound of opt-Vertex Bipartization on G is as
follows: The graph is traversed using depth- rst search'® In the heuristic algorithm, an
initial vertex is chosen arbitrarily. From then on, we are always traversing from a visited
vertex to a not-visited one during the search. The heuristic will color the graph during
traversal; the initial vertex is given the color red, and from then on, each verex that
is visited from a red vertex is colored blue and vice-versa. During this coloring pocess,
conicts may arise if a vertex is given a color that one of its neighbors alredy has (this
leads to con ict edges between equally colored vertices). In this case, if the newly colored
vertex causes more than one con ict edge, it is deleted fronG. If the newly colored vertex
causes one con ict edgee., the endpoint of e, with the higher degree is removed fromG. In
a more formal form:

Algorithm: opt-Vertex Bipartization heuristic
Input: A graph G = (V;E)
Output: An upper bound for opt-Vertex Bipartization on G
o1 cost O
02 choosev 2 V arbitrarily
03 color(v) red
04 for each vertexu visited from a colored vertexw
during depth- rst search traversal of G do
05 if color(w) = red then
06 color(u) blue
07 if color(w) = bluethen
08 color(u) red
09 if u has more than one neighbor colored equally to ithen
10 G Gnfug
11 cost cost+1
12 if u has exactly one neighborx colored equally tou then
13 z vertex from fu;xg with maximal degree
14 G Gnfzg
15 cost cost+1

16 return cost

The idea behind this heuristic is the following: The graph is greedily colored as ift were
bipartite. Once this cannot be done anymore, two cases are distinguished: If the newly
colored vertex u is the cause of more than one con ict edge, either it or all equally colored
neighbors need to be removed fronG. The locally cheaper solution, i.e., the deletion ofu,
is chosen. If the coloring ofu causes just one con ict edge with another vertexx in G, the
vertex with the higher degree is deleted because this implicitly removes as many edges|
potential con ict edges|as possible from G. The algorithm is illustrated in Figure 6.4. As
the algorithm executes a depth- rst search algorithm exactly once, its running time isO(jE)
(assuming that marking vertices as \deleted" takes constant time).

13 Depth- rst search is an algorithm to e ciently traverse all vertices in a connected graph in O(jEj) time
using a recursive procedure. See, e.g., [CLRS01] or [Skie98] for details.

6.3. A BRANCH&BOUND APPROACH 79

initial graph G step 1 step 2 step 3

step 5 step 6

resolve con ict

done (graph is bipartite)
maximum cost for
Vertex Bipartization onGis 2

step 7 resolve con ict

Figure 6.4: lllustration of the heuristic for opt-Vertex Bipartization used prior to
branch&bound. Starting from an initial vertex in a graph G which is colored black, all
vertices in the graph are colored alternatively grey and black during a depth- rst seach
traversal of G. If con ict edges (drawn in bold) arise, the newly colored vertex or one of its
neighbors is deleted according to the rules given in the text. For the displayed proceeding
of the algorithm, a solution involving the deletion of 2 vertices from G is found (in this case,
this is even an optimal solution).

6.3.2 Data Reduction Rules

The following data reduction rules can be applied to a graphG before and while performing a
branch&bound search for an optimal solution to opt-Vertex Bipartization or opt-Edge
Bipartization . For all reductions, we will use the following notation and agreements: The
reduction rules are always applied to a graphG = (V; E), G is not assumed to be connected,
however, all reduction rules presented apply only to connected componentd. If G induces
a connected bipartite subgraphG®= (V%E9, we denote by V and V (where V\ V= ;
and V%= V?[V) the two subsets into which V° can be divided such that E° contains no
edges between vertices iV, and vertices in V. For simplifying the discussion, we shall refer
to vertices in one of the two subsets (eitherv,? or V,)) as being coloredred and those in the
other subset as being coloredlue (analogously to the previous section).

In order to simplify the discussion of data reduction for opt-Edge Bipartization , we will
allow edges to be given aveight! : E ! N. This weight has the following meaning: Initially,
each edge in the graph has weight 1, however, if it is observed during data reduction tha
a certain structure (e.g., a set of paths) between two verticeas and v can only be removed

141 G is not connected, we should not solve Edge Bipartization or opt-Vertex Bipartization on G
as a whole but on its connected components separately as this is much more e cient (see the discussion of
Reduction Rule 3).

80 CHAPTER 6. GRAPH BIPARTIZATION

from the given graph by deleting at leasti edges betweenu and v, this substructure is
replaced by an edge of weight|representing the fact that the deletion of this edge in the
new graph actually represents the deletion oi edges in the original graph.

For opt-Vertex Bipartization , we introduce the following modi cation: As will be shown
in the following reduction rules, it is sometimes possible to predetermine for avertex v that
there is an optimal solution to opt-Vertex Bipartization on the given graph that does
not include v. In this case we allowv to be marked as \not considered for deletion”, meaning
that during branch&bound, there is no branching considering the deletion ofv|rather, v is
always kept in the graph. We denote such a marking of a vertex by calling v \undeletable".
Note that a vertex marked as \undeletablé is still considered for removal by reduction rules
that might apply to it.

It is important to note that there are two main types of reduction besides the special case for
opt-Vertex Bipartization just mentioned: The rst one involves removing some parts
of a graph because these parts do not play any role in nding an optimal solution. The
second one involves choosing a certain edgeor vertex v for deletion because it is clear that
there must exist an optimal solution containing e or v, respectively. We will emphasize the
di erence between \deletion" and \removal" by increasing a variable count|re ecting the
increase in the cost of the solution|each time a deletion is performed.

It is important to recognize that through the application of an individual reducti on rule,
other rules may become applicable, therefore, the following reduction rules should be used
iteratively on the input graph until no further modi cation is possible. In principl e, the
order of execution of the individual reduction rules is not important in the sense that the
execution of one rule renders another rule inapplicable. For best performance, however,
Reduction Rules 1 and 2 should be executed rst as they are quick and may quickly reduce
the given graph's size. This should then be followed by Rules 3 and 4. These rules maplit

a connected component in the input graph into two or more smaller connected components,
so that the following, computationally more expensive rules can be carried outon each
component separately, which greatly increases their e ciency (see also the discussioof
Reduction Rule 3).

The following rules are all applicable to both Edge Bipartization and Vertex Biparti-
zation unless explicitly stated.

Reduction Rule 1 (Removing Bipartite Components): If G induces a connected bi-
partite component C, remove C.

Correctness The correctness of this algorithm is obvious. However, it is presented here
because some of the later reduction rules as well as the branch&bound procedure itself
might cause a bipartite connected component to be induced irG.

Running time: All bipartite connected components in the input graph can be found using
a depth- rst search algorithm that colors the vertices in G while detecting all connected
components. This takesO(jEj) time.

Reduction Rule 2 (Removing Vettices of Low Degree: Remove all vertices of de-
gree 1 from G. For opt-Vertex Bipartization , mark all vertices v of degree2 as un-
deletable®®

150dd cycles consisting just of vertices of degree 2 are handle d by Reduction Rule 5.

6.3. A BRANCH&BOUND APPROACH 81

\ Reduction
\Y ” \Y Rule 3
u u
J

opt-Edge oo
Bipartization , ~7. o

V / o AY
opt-Vertex O i
Bipartization S
s Reduction
opt-Edge S \
Bipartization % Rule 4
R . opt-Vertex L N
Bipartization

T 1 bipartite subgraph, still bipartite including v
"1 non-bipartite subgraph
/. bipartite subgraph, not bipartite if v is included J

Figure 6.5: Examples for Reduction Rules 3 and 4. A detailed description is givemi the
text.

Correctness and Running Time: The algorithm|clearly executable in O(jV]) timelis cor-
rect for vertices of degree 2 since any odd cycle i that includes v must also include both
its neighbors. Therefore, for any optimal solution to opt-Vertex Bipartization on G in-
cluding v there is a corresponding optimal solution including one ofv's neighbors. Vertices
of degree 1 can impossibly induce a cycle i and can therefore be removed.

In the implementation of the branch&bound algorithms, we will also introduce the following
optimization for opt-Edge Bipartization : A vertex v of degree 2 is only colored if both
of its neighbors already have been colored. This is due to the fact that we can then ool v
deterministically. 16

Reduction Rule 3 (Splitting the Graph 1): Let e 2 E be an edge-separatdf of or-
der1in G = (V;E). Then, remove e from G.

Example: See Figure 6.5 for an illustration of this reduction.

Correctness: If e is an edge that connects two otherwise disconnected components i@,
then e may clearly not be member of a cycle inG. Therefore, any union of two optimal

181f both neighbors are colored equally, we color v in the opposite color, otherwise we color v so that the
weight of the edge that connects v with its equally colored neighbor has minimum wight.
17 Separators are de ned in Section 3.1.

82 CHAPTER 6. GRAPH BIPARTIZATION

solutions anopt-Graph Bipartization problem on G; and G, yields an optimal solution
forG=Gy[G2[f eg.

Application of this rule can signi cantly reduce the running time of the branch&bound alg o-
rithm: As we have already seen previously, branch&bound needs (in a worst-case estitian)
to check O(2/V1) di erent solutions to solve opt-Edge Bipartization or opt-Vertex Bi-
partization on a graph G. However, if there is an edgee in G whose removal splitsG into
two nonempty componentsG; = (Vy;E;) and G, = (V,; E») with

ViV Vo= Vo[Vo=V,

then, solving opt-Edge Bipartization or opt-Vertex Bipartization for both compo-
nents separately only requires looking at

2iVij 4 oiV2] o omaxfi VijijVajg oiV]

solutions. Note that the gain in computational speed through this rule increasegshe more
equally sized the two components are.

Running time: In order to nd all separating edges that comply with this reduction rule, we
need to iterate over alle = fu;vg 2 E and then, for every suche, test in O(JE]) time (using
depth- rst-search), if there is a path from u to v that does not lead overe. Thus, the total
running time for applying this rule is O(Ej?).

Reduction Rule 4 (Splitting the Graph I1): Letv 2 V be a vertex-separator of orderl

fvg. Remove allG; that are bipartite. 8

for opt-Vertex Bipartization . If, for a certain C;, the subgraph induced inG by
the vertices of C; [f vg is bipartite, remove C; from G. If a C; itself is bipartite, but
the subgraph induced by the vertices i€; [f vg is not, deletev, and increase count
by one.

Example: See Figure 6.5 for an illustration of the di erent cases of this reduction.

Correctness: For opt-Edge Bipartization , the correctness of the reduction rule is clear:
If v is a vertex-separator of order 1 forG, any odd cycle includingv does not include vertices
from two dierent C;. For opt-Vertex Bipartization , there are two cases to consider:
On the one hand, if a connected componenC; is bipartite and C; [f vg is bipartite as
well, there are no odd cycles inG that include a vertex from C;, for that reason C; may be
removed from G. On the other hand, if a componentC; is itself bipartite, but C; [f vg is
not, then there exists at least one odd cycle inG consisting of v and some vertices inC;.
Note however that all such odd cycles that can be destroyed by deleting a vertex front;
may also be destroyed by deletingv.

Running time: In order to nd all vertex-separators of order 1 in G, we iterate over the
vertices in G, each time testing by depth- rst-search whether deletion of v results in at
least two connected components. This takes a total ofO(jVjjE]j) time. For each of these

18|f v is not colored, we branch into two subcases where v is either colored red or blue before applying
this reduction rule.

6.3. A BRANCH&BOUND APPROACH 83

components, we test in the case obpt-Vertex Bipartization whether it is bipartite and
whether v only has edges to vertices of one color for each component. Thus, the algorithm
takes O(jVjjEj) time for opt-Edge Bipartization and O(jVj?jEj) time for opt-Vertex
Bipartization

Reduction Rule 5 (Making Simple Paths Shorter): Let u and v be two vertices inG
that are connected by a pathp = (wq:::w) of length ™ in G; u and v may additionally be
connected by an edge 2 E. If every w; has degree?, then remove allw from G and

connectu and v by a new edgd u; vgif " is even andu and v are not already connected
by an edge inE.

connect eachu and v to a new vertexz by two edgesf u;zg and fv;zg if " is odd.

For opt-Edge Bipartization , two cases must be distinguished for the adjustment of the
edge-weights:

I. If * is even, fu;vg has a weight equal to the minimum weight edge ip plus|if u
and v were connected by an edge before the reduction|the weight of e.

II. If * is odd, both fu;zg and fv;zg have a weight equal to the minimum weight edge
in p.

If there is a connected component inG that is a cycle of size 3, delete the lowest weight edge
(orjin the case of opt-Vertex Bipartization |an arbitrary vertex) from the cycle and
remove the rest of the component.

Example: See Figure 6.6 for an example of the cases of this reduction. In the gure, paths
of length 3 (top) and four (bottom) and their respective reduction are shown as eamples.

Correctness: Note that by replacing the path p by a shorter one, all odd cycles inG are
preserved.

Correctness foropt-Edge Bipartization . Since the removal of a single edge fronp de-
stroys all cycles that include p, there is no optimal solution to opt-Edge Bipartization

on G that includes the removal of two or more edges fronp. The adjustment of the edge-
weights assures that we replace by an edge whose weight is equal to the lowest weight edge
that would destroy p. Adding the weight of the edgee connectingu and v (if such an edge
exists in G) in Case | is justi ed by the observation that in order to \disconnect" u and v,
we have to delete an edge ip as well ase itself (any odd cycle including p implicitly de nes

an odd cycle that contains e instead of p).

Correctness foropt-Vertex Bipartization : Assume that there is at least one cycle inG
that contains the path p betweenu and v. If there is an optimal solution to opt-Vertex
Bipartization on G that includes the removal of a vertex from p (thus \disconnecting" u
and v), then there must also be one that includes eitheru or v, because deleting eitheru
or v from G clearly \disconnects" u and v just as the deletion of any other vertex from p
would. Moreover, cycles that include eitheru or v but not p are destroyed alongside.

Running time: This reduction rule can be implemented very e ciently in O(jVj) time:
To nd all simple paths in the graph, we simply iterate over each vertex u in G. If the
respectiveu has degree 2, we check which of its neighbons and w has degree 2. For each
neighbor that has degree 2, we check whether its neighbor (other than) has degree 2 and so

84 CHAPTER 6. GRAPH BIPARTIZATION
o v :_ T y
u Y é ; u z \ g
§-< >‘é S

opt-Vertex

}b>< v - Bipartization . ; >Reduction
: " Rule 6

\ Reduction
Rule 5

j bipartite subgraph, still bipartite including u and v
r>: bipartite subgraph, still bipartite including u
but not bipartite if v is included J

Figure 6.6: lllustrations for Reduction Rules 5 and 6. Detailed descriptions fo the corre-
sponding rules are provided in the text.

on, extending the path until we reach to end-vertices with a degree di erent from two, then
applying the reduction. If this rule is applied for opt-Edge Bipartization , we additionally
record the lowest weight edge inp while elongating p (this only requires a constant amount
of additional time for each vertex added to p). Each vertex of degree 2 is only looked at
once, any other step can be carried out in constant time. Hence the algorithm take®(jVj)
time to nd all simple paths in the graph.

Reduction Rule 6 (Vertex Separators of Order 2): Let fu;vg V be a vertex-
separator of order 2 in G, where C is a connected component induced irG by deletion ofu

and v.

If C[f u;vg is bipartite, replace C in G by a path of even length with edges and €°
if all paths from u to v using just vertices in C are of even length, else replac€ by
an edgee® For opt-Edge Bipartization , the weight ofe, €® and e”is equal to the
weight of the minimum cut in G°= C [f u;vg betweenu and v.*°

For opt-Vertex Bipartization : If G%= C[f u;vgis not bipartite but C [f ug is,
deletev from G, increasing count by one. Additionally, remove C from G. Proceed
analogously if G®is not bipartite but C [f vg is.

Example: See Figure 6.6 for an example of the cases of this reduction.

Correctness: If G°= C[f u;vgis bipartite, this subgraph contains no odd cycles. Therefore,
if there are odd cycles inG that include vertices from C, these will always includeu and v
as well. This already justi es the replacement by paths for opt-Vertex Bipartization ,

19The minimum cut between two vertices u and v in a graph is the edge separator of minimum weight
whose deletion puts u and v into two disjoint connected components.

6.3. A BRANCH&BOUND APPROACH 85

as for any optimal solution including the deletion of a vertex w from C there is a corre-
sponding optimal solution including the deletion of v or u instead of w. For opt-Edge
Bipartization , if there is an optimal solution that includes the deletion of edges fromG°,
then all paths betweenu and v must be destroyed by such a deletion. The minimum sum
of edge-weights necessary in order to achieve this is exactly thminimum cut betweenu
and v. The correctness of the second special case of this reduction rule fopt-Vertex
Bipartization is shown as follows: IfG%is not bipartite, at least one vertex from G° must
be deleted in order to bipartize G. SinceC [f ug is bipartite, deleting v leads to an optimal
solution as any odd cycle inG that includes vertices from C can be destroyed by deletingv.
We can removeC afterwards due to Reduction Rule 4, asu is a vertex separator of order 1
in G after the deletion of v.

Running time: Finding all C in G to which this reduction rule may be applied can be
done in O(jVj? jEj) time by iterating over all possible pairs u;v 2 V and then testing if
the removal of u and v yields a bipartite connected component inG. For opt-Vertex
Bipartization , O(jVj2 jEj) is then also the total running time for this reduction rule, as
nding out whether all paths between u and v are even or odd can be done in constant time
once we have found a bipartite componentC in G n fu;vg|we just have to look if both u
and v are connected to equally colored vertices irC (in which case all paths are of even
length) or to di erently colored ones (in which case all paths betweenu and v via C would
be of odd length). For opt-Edge Bipartization , we have to additionally perform the
edge weight adjustment. The minimum cut betweenu and v in G° can be found, e.g., using
the Ford-Fulkerson algorithm rst presented in [FoFu62].?° The running time for the Ford-
Fulkerson algorithm is bounded by O(Ej jVj) in this case?, leading to a worst-case running
time of O(jVj® jEj?) for this reduction rule when applied to opt-Edge Bipartization

Reduction Rule 7 (Simplifying Cycles of Size 3): For opt-Vertex Bipartiza-

tion : Let there be three verticesu, v, and w in G that form a cycle of size 3, wherew
has degree 2. Let the degree of v be smaller than that of If the degree ofv is at most 3,
deleteu from G, increasing count by one. (Note that afterwards,v and w can be removed
from G due to Reduction Rule 2.)

Example: Figure 6.7 provides an illustration for this reduction. Note that after the del etion
of u, Reduction Rule 3 can be applied to the resulting graph.

Correctness: Sinceu, v, and w form an odd cyclec in G, at least one of these three vertices
must be removed from G in order to bipartize G. Consider any odd cyclec® 6 c in G.
Observe that any ¢ that can be destroyed by removingw from G can also be removed by
deleting either u or v from G. Now, if the degree ofv is at most 3, any odd cycle other
than cin G that includes v must include u as well. Therefore, there must be an optimal
solution to opt-Vertex Bipartization on G that includes the removal of v.

Running time: This reduction rule can be carried out in O(jV]jEj) time using the following
algorithm:

20The work by Ford and Fulkerson in [FoFu62] explores the impor tant algorithmic area of network ows .
The Ford-Fulkerson algorithm nds a maximum ow F in a graph G between two vertices u and v|the
value of jFj is equal to the minimum cut separating u and v according to the famous max- ow min-cut
theorem.

2LIf F is a minimum cut for a graph G, the running time of the Ford-Fulkerson algorithm is bounde d
by O(JEj jFj) according to [CLRSO1]. Note that the minimum cut between u and v cannot be larger
than max f degree(u); degree(v)g < jVj, leading to the total O(jEj jVj) worst-case running time.

86 CHAPTER 6. GRAPH BIPARTIZATION

w w

Figure 6.7: An example for Reduction Rule 7. Note that after applying this rule|i .e., after
deleting u and increasingcount by one| v and w may be removed fromG due to Reduction
Rule 2

Algorithm: opt-Vertex Bipartization , Reduction Rule 5
Input: A graph G =(V;E)
Output: G modi ed according to Reduction Rule 5

01 for eachw 2 V of degree 2do

02 v neighbor of w with lower degree
03 u neighbor of w with higher degree
04 if fu;vg 2 E then
05 if degree¢) 3then
06 G Gnfug
07 count count+1
Reduction Rule 8 (Simplifying Cycles of Size 4): Let there be a cyclec of size 4

in G whose vertices do not induce a cycle of size 3. i contains exactly two vertices of
degree 2 that are not connected? then remove those two vertices and their edges froiG.
Add a new vertexz to G and connect the remaining two vertices fromc|denote them by u
andv|to z via two edgese®:= fu;zg and €”:= fv;zg. For opt-Edge Bipartization , the
edge-weights are adjusted in the obvious way: lop u and v are connected via two distinct
paths. The weight ofe® and e®is set to the sum of the lowest weight edge in one path and
the lowest weight edge in the other.

Example: Figure 6.8 illustrates the di erent cases of this reduction rule.

Correctness: Since only the verticesu and v are connected toG nc and c is of even length,
any odd cycle in G that contains vertices from c also includesu and v. This justi es the

replacement of c for opt-Vertex Bipartization . For opt-Edge Bipartization , itis

additionally important to note that in order to \disconnect” u and v we must remove an
edge from each of the two distinct paths betweeru and v via c.

Running time: In order for this reduction to run fast, we need to nd a way to detect cycles
of size 4 inG that comply with this reduction rule. This can be accomplished in O(jVj?)
time using the following algorithm:

Algorithm: Finding cycles of size 4 for Reduction Rule 8
Input: A graph G =(V;E)
Output: All cycles of size 4 inG that comply with

the requirements of Reduction Rule 8

o1 for eachw 2 V do

22Note that the case where there are two vertices of degree 2 in c that are connected by an edge leads to

the structure I:I which is already handled by Reduction Rule 5.
u v

6.3. A BRANCH&BOUND APPROACH 87

02 if w has degree Zhen

03 u rst neighbor of w

04 v second neighbor ofw

05 for each neighborz of u do

06 if z has degree 2 arz 6 w then

07 if z hasu and v as neighborsthen
08 output fw;u;z;vg

For applying the reduction rule, instead of outputting the cycles we perform the actual
reduction (this takes a constant amount of time). The algorithm requires O(jVj) time each
time lines 05 to 08 are called (we iterate overO(jVj) vertices, note that lines 06 to 08 require
only a constant amount of time since the degree ok is bounded by 2). Lineso2 and 03
obviously require a constant amount of time. Lineso2 to 08 are calledO(jVj) times by line
01; therefore, the total running time of this algorithm is O(jVj) O(jVj) = O(jVj?).

Reduction Rule 9 (Simplifying Grids): For opt-Vertex Bipartization . Let t(r)lere
i‘U Z va
be two cyclesc; = uwzz® and ¢, = vxzz®in G (this leads to the 1 -like structure ~ :
‘Wz X

). If z and z° have degree 3u and v are not connected, andw and x are not connected by
an edge, removez, z% and their adjacent edges fromG and add two edge$ u; xg and f w; vg
to G.

Example: Figure 6.8 provides an illustration for this reduction rule.

Correctness: Suppose that there is an optimal solution to Vertex Bipartization on G
that includes the deletion of z. Now, the solution can only be optimal if one of the ve
other verticesw, u, v, x, or z%is included as well (note that otherwise, the deletion ofz is
redundant as there are still paths betweenu, w, and v, x). We can now simply show that
independently of which of these ve vertices is included in the solution, there is alwaysa
corresponding optimal solution that does not include the deletion ofz:

If the additional vertex is w, delete x instead of z.
If the additional vertex is u, deletew instead of z.
If the additional vertex is z° delete u and w instead of z and z°.
If the additional vertex is v, delete x instead of z.

If the additional vertex is x, delete w instead of z.

For each of these \deletion-substitutions,” the following holds true: Any two vertices that
were \disconnected" using the original solution are also disconnected in the new solutio
Therefore, for any optimal solution to Vertex Bipartization that includes either z, z°
or both, we have shown that there must then exist an equally sized optimal solutn to
Vertex Bipartization on G that includes neither the deletion of z nor that of z°

Running time: In order to be able to e ciently carry out this reduction rule, an e cient
algorithm for identifying the grid-like structure formed by c¢; and c; is heeded. The following
algorithm can nd all such structures in a graph in O(jVj + JEj) time by iterating over all
vertices in G in O(jVj) time to nd a vertex z of degree three. For each neighboe® of z

88 CHAPTER 6. GRAPH BIPARTIZATION

u/\v M >Reduction
' Rule 8

. u ZO Vv 3 u \Y

L >Reduction
Rule 9
STWooz X S w X

Figure 6.8: An illustration for Reduction Rules 8 and 9.

that has degree 3 as well, we check i®(JEj) time whether the neighbors ofz and z° can be
grouped into two pairs where the vertices in each pair are connected by an edge.

By Reduction Rule 9, we conclude our presentation of reduction rules. The presented rules
have been chosen mainly because they can be implemented rather e ciently and are expected
to be applicable to a wide range of possible input graphs. Some rules have been givemly for
opt-Vertex Bipartization , because the reduction does not allow a correct representation
of the edge-weights: For example, consider the grid in Reduction Rule 9. Deletion ofhie
newly inserted edgef u;xg after the reduction has the same e ect as deletingf u; z% and
fz;xg in the original graph. The analogue holds true for the inserted edgd w;vg. So far,
the edge-weights forf u; xg and f w; vg seem obvious, however, they are unable to handle the
case where the only optimal solution toopt-Edge Bipartization on the input graph G
involves the deletion off z; z%,.

There are still some possibilities for future extensions of the algorithm For example, for
cliques®® in the input graph, it is more e cient to perform the branching on which ver-

tices/edges arenot deleted rather than on which are deleted This is due to the observation
that for a clique of sizek, at least k 2 vertices need to be deleted in order to bipar-
tize that clique; for opt-Edge Bipartization , at most % of the k? k edges can be
kept in the graph, because a bipartite graph with k vertices may not contain more than

maox% ki % edges. The problem with a reduction rule based on cliques is that we
|

need to nd an e cient way to nd large cliques|but nding a maximum clique in a graph

is not only NP-complete but also hard to approximate (similar to Graph Bipartization ,
there exists no PTAS?* for clique detection unlessP=NP). Moreover, since the graphs in
this work originate from biological sources and edges representonicts or aws in the
original data, we would not expect to see large cliques occurring in the input grapha our
branch&bound algorithm.

Extensions of the above reduction rules to edge- or vertex-separators of a higher order
than 2 do not seem useful and/or possible: Finding large edge- or vertex-separators in a
graph should be possible e.g., using maximum- ow techniques (see Reduction Rule &)ut
the main argument employed above that \an odd cycle inG must contain either all or none
of the separator elements" does not work for higher order separators because there ght
be odd cycles in the input graph that contain only a subset of the separator.

23 A clique in a graph is a subgraph where every vertex is connect ed to all other vertices by an edge.
A clique of size k therefore contains k(k 1)= k2 k edges.
24 Refer to footnote 4 on page 71 for a de nition of PTAS.

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 89

6.4 Implementation and Comparison of the Algorithms

It was already emphasized at the beginning of the last section that branch&bound algo-
rithms provide no guarantees that their running time is better than an exhaustive seach
of all possible solutions to a given problem. Therefore, in order to determine thes ciency
of the developedGraph Bipartization -algorithms, they were implemented in the Java®®
programming language (version 1.4.1) and tested on random graphs as well gsaphs corre-
sponding to the SNP-related problems presented in the next chapter. In this section, we rt
introduce the usage of the software-package, followed by some implementati details (e.g.,
the data structure for representing the graph). This section is concluded by the resultsrbm
testing the implementation on various random graphs, the results concerning SNP-relad
problems are presented in Section 7.4. As we will see then, although the algorithsndo not
allow us to e ciently solve Graph Bipartization on random graphs in general, they are
e cient for solving the graphs arising during the analysis of SNPs.

6.4.1 Using the Program

The bipartization-software was designed with the experimental testing of the dgorithms
in mind. It therefore provides detailed statistics concerning the size of the searchree,
various running-times, and reduction rule usage. Whilst the output les are provided in
a very readable format, the user-interface is only a command-line interface (rdter than a
graphical one) in order to simplify automatic batch testing for many graphs and keep the
measurements free from interferences witllava's rather slow graphical output capabilities.

Input File Format: The format for the input le is straightforward and should easily
be convertible to other graph formats such as that of theLEDA graph-library?6. The le
specifying the graph must be written in plain ASCII-text and is build up as foll ows (text
that must literally appear in the input le is written in a typewriter -font):

01 # Graph name

02 The name of the graph

03 # Number of Vertices

04 The number n of vertices in the graph.

05 # Number of Edges

06 The number m of edges in the graph.

07 # Vertex Names

08 The names for the graph's vertices, each one in a separate line.

08+n # Edges
09+n For each edge in the graph, a separate line contains the
connected vertices' names separated by a space character.

09+n+m # EOF

25A good overview of Java is, e.g., [Flan02]. Sun Microsystems ™ provide a free software-development
kit (SDK) for Java on their webpage [SuMi03].

26LEDA , a library written in the C++-programming language, is wide ly regarded as one of the \the
best-designed general-purpose graph data structure[s] cu rrently available" [Skie98]. More information about
LEDA can be found in [MeNa99].

90 CHAPTER 6. GRAPH BIPARTIZATION

Note that the vertex names in linesos to 08+n 1 may not contain any spaces (such as the
simple space character or a tabstop).

Starting the Program: The program is started by calling
java Bipartize infile outfile [E V R H<int> A]

where infile is the name of the le containing the graph that is to be bipartized, and
outfile speci es the name of the le to which the results from the branch&bound program
will be written to. Additionally, the following ags are recognized:

E makes the program solveopt-Edge Bipartization on the input-graph.
V makes the program solveopt-Vertex Bipartization on the input-graph.

R turns o data reduction during branch & bound (the initial data reduction is still
performed).

H is only valid for opt-Edge Bipartization and must be directly followed by an inte-
ger. This integer speci es the number of runs for the initial (randomized) recoloring
heuristic. Since the heuristic for opt-Vertex Bipartization is deterministic, this
ag has no e ect when used together with the H ag.

A terminates the program after the initial heuristic was executed, writing the approxi-
mate solution to the output le.

Note that exactly one of the ags E and V must be speci ed by the user, all other ags may
be speci ed at will.

Output: The detailed results of the bipartization as well as statistics concerning, e.g.,
search tree size and usage of reduction rules, are written to the speci ed log le.

6.4.2 Some Implementation Details

In this subsection, we introduce the basic implementation-scheme and some details mcern-
ing, e.g., the used data structures of theGraph Bipartization -software package. The
implementation consists of 16 classes with a total of about 2600 lines aode; the relations
of the central 11 classes are provided as ML diagram?’ in Figure 6.9 which shows the
basic structure of the implementation.

The most important fact to notice in the implementation is that vertices and edges in the
graph can only be created but never deleted using the methods provided by the Graph
class itself. Methods for deleting vertices and edges from the graph are only providebly
the GraphModi er class, which can be created from a Graph using the Graph.modi er()
method. Once an element from the graph has been deleted by a GraphModi er, it cannot
be restored directly but only through using the GraphModi er.undoStep() method. This
ensures that elements in the graph can only be undeleted in the reverse order that they were

2TUML is a standard for showing class-relations for programs writ ten in object-oriented languages such as
Java or C++ . The standard is speci ed by the Object Management Group [OM GO03]. A good introduction
to UML is, e.g., [Page99].

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 91

VertexHeuristic GraphReader EdgeHeuristic
f from default g f from default g f from default g
+ execute() + read() + execute()
N ; 7
0::1/-heuristic AN I 7/ 0::1\-heuristic
\uses X uses,
0L N uses, s o
. N , .
—/ -graph = \/ % “graph —
VertexBipartizer Graph EdgeBipartizer
f from default g uses f from default g uses f from default g
+ execute() |+ connectedComponents() B + execute()
+ setNumberOf __0z11, createEdge() 0:1 + setNumberOf
HeuristicRuns() + createVertex() HeuristicRuns()
+ edges()
ﬁ + isBipartite() v
uses,”/ | + modi er() \uses
L’ + vertices() AN
L7 01 K ‘ ; N 0:1 ~_
’ -graph / o171 | v -graph N
’ : use, N
s // -graph : ‘S \\ AN
’ / \ \ \ \
7 / | cCreates \ AN
v / | | \ N
0::1| -dataRéductio L *\ 0:1 |-dataReduction
7 /) GraphModi er N .
VertexDataReduction K f from default g Y EdgeDataReduction
f from default g / + addEdge() \ f from default g
+ execute() 0:1)/ + addVertex() Y 011 | + execute()
+ undoStep() o er/, + deleteEdge() V\mocu ey undoStep()
T / + deleteVertex() v T
: /) _ 4+ undoStep Y :
: uses, creates , Rt BTN ‘uses, creates :
I / ,‘uses, creates _ -~ uses* | \ I
‘ / \ N |
| -7 |
| Vertex - Edge !
| f from default g A’USES f from default g |
useS =1 + adjacentEdges() e em e e] + connects() [uses
+ degree() uses + getPointers() [*
+ deleteEdge() oy T T USES, cTeafes = + getU()
+ getColor() v + getV()
+ unDeleteEdge() Oul + getWeight()
- ePointers

Figure 6.9: UML-diagram for the implementation of the branch&bound algorithm. Note
that for each class, only the \relevant" (meaning relevant to understanding the bast program
function) portion of public methods is shown in order to keep the diagram readable.

deleted, i.e., if an elementa was deleted earlier than an elemenb it can only be undeleted

once b has been undeleted. Observe that this deletion-scheme is su cient for the graph-
modi cations performed by a branch&bound algorithm on the graph,?® allowing us to work

with only a single copy of the graph in memory® and thus avoiding the computational cost

in terms of time and memory required for creating many duplicates of the graph.

The most important bene t of the GraphModi er's delete-undelete scheme is the speedup of
the deletion and undeletion itself. Making use of the fact that the insertion of vertices and
edges into the graph is only performed during initialization of the branch&bound algorithm,

the implementation trades a computationally more time-expensive graph-creationprocess
for the gain of computational speed during the branch&bound process itself: After the

28 Recall the algorithm presented on page 75.
29Keeping the information necessary for the undelete-operat ion can be done very e ciently, as we will see
shortly

92 CHAPTER 6. GRAPH BIPARTIZATION

graph has been created, a vertex can be deleted and undeleted irO(degredv)) time from
the graph, edges can even be deleted and undeleted i@(1) time. In order to achieve
this, a double-linked list is constructed for the graph elements whose individual elemerst
can be accessed in constant time via a HashMaj?. Due to the stack-like structure of the
deletion-undeletion scheme, pointers in the double-linked list can be modied in constant
time because we can be sure that before an undelete-operation is performed for @esi c list
element, the list has exactly the same buildup it had right after the corresponding dettion.
Since the graph elements are never really deleted but only shut o from being accessed,
storing the undelete-information only requires to store pointers to the deleted elerants,
which never occupies more memory than the graph itself.

Some other details to notice in the implementation are the following:

The VertexBipartizer class provides a method setNumberOfHeuristicRuns() only to
maintain a common interface with the EdgeBipartizer class|since the heuristic for
opt-Vertex Bipartization is deterministic, executing it more than once would be
redundant.

Each edge can be assigned an array of edge-pointers by the Edge-constructor. Thés i
important for the opt-Edge Bipartization reduction rules, because these reduction
rules may replace multiple edges with a single new one. This new edge then contains
a reference to the edges it represents by its edge pointer, which greatly simpli es the
output of results. If no edge-pointers are speci ed during construction, an edge only
has a pointer to itself.

Since each vertex maintains a double-linked list of its adjacent edges, the class Vertex
provides the delete() and unDelete() methods to manipulate this list when an adjacent
edge or vertex is removed from the graph.

Some possible future improvements to the presented implementation will be diissed to-
wards the end of this section following the presentation of the practical testsresults.

6.4.3 Tests and Test Results

In this subsection, we present results concerning the performance of the branch&bound
implementation on random graphs. Results concerning the performance on graphs reled
to the SNP problems introduced in the next chapter are given in Section 7.4.

Methodology The practical experiments on random graphs can be divided into two parts:
In the rst part, random graphs (RGs) were generated and then bipartized. In the second
part, random bipartite graphs (RBGs) were generated, followed by an addition of a xed
number of de-bipartizing edges or vertices, where de-bipartizing edges connect two red or
two blue vertices and de-bipartizing vertices are connected to both some red and some blue
vertices.

Both the RGs and the RBGs were generated by the following algorithm that is ued to
generate random graphs inLEDA [MeNa99]: First, a list of all possible edges in the respec-
tive graph is created. Then, the desired number of edges in the graph is chosen randomly

30 3ee, e.g., [CLRS01] for more details on hash-based data stru ctures

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 93

from this list and inserted into the graph. The de-bipartizing elements were inserted aalo-
gously3! Using these random graphs, the following measurements were made fopt-Edge
Bipartization and opt-Vertex Bipartization

The running-time and search tree size when bipartizing a RG with 20 vertices, relatie

to the average vertex degree. Each measurement was performed twice, once with and
once without the application of data reduction during branch & bound (initial data
reduction was always performed).

The running-time and search tree size when bipartizing a RG with an average vertex
degree of 3, relative to the number of vertices. Each measurement was performaalice,
once with and once without the application of data reduction during branch&bound
(initial data reduction was always performed).

The running-time and search tree size when bipartizing a RBG with 20 vertices, relave
to the average vertex degree and the number of de-bipartizing elements.

The running-time and search tree size when bipartizing a RBG with an average ver-
tex degree of 3, relative to the number of vertices and the number of de-bipartizing
elements.

Additionally, we evaluate the average usage and performance of the reduction rak and the
performance of the initial heuristics.

Since in a rst run of the experiments, the reduction rules based on separators (Rules,34,
and 6) were almost never applicable (although computationally expensive), it seemghat
the general structure of random graphs makes separators of small order very impbable
(see the discussion towards at the end of this section). The respective reduction ressil
were therefore switched o for all measurements in order to facilitate the tesing of more
instances.

With the purpose of obtaining a good estimation of the average-case running-tira and search
tree size during bipartization, each measurement was performed on 10 di erent RGRBGs

with the same parameters (number of edges, vertices and de-bipartizing elements), lea
to a total of approximately 6 000 bipartized graphs. All results were obtainedon a machine
equipped with a 2.4 GHz Intel® Pentium® IV Processor and 512 MB physical memory,
running Red Hat™ Linux. The software was compiled using theJava SDK 1.4.1 from Sun
Microsystems™ [SuMi03].

Results The recoloring heuristic almost always found a solution that is within 20% of an
optimal solution (with the average di erence being around 15%) when executed 10 tires.
This gure can be decreased further to an average di erence of less than 10% by executing
the heuristic approximately 25 times3? The heuristic for opt-Vertex Bipartization did
not perform as well although satisfactory: It almost always nds a solution that is within
50% of the optimal solution, with the average heuristic solution being abat 40% larger
than an optimal one. It should be noted that the opt-Vertex Bipartization heuristic is

3INote that a graph with, e.g., n added de-bipartizing edges may still have a solution to opt-Edge
Bipartization that is smaller than n because it might be bipartized more e ciently by deleting ot her edges
other than the inserted ones. In the following results, we wi |l say that a graph has n added de-bipartizing
elements if only if the solution to the corresponding opt-Graph Bipartization problem really has size n.

32 Cases where the recoloring heuristic might not perform well are discussed in [SMVS97]. Interestingly,
some of these cases are handled by the reduction rules from th is chapter.

©
&

CHAPTER 6. GRAPH BIPARTIZATION

opt-Edge Bipartization opt-Vertex Bipartization

) 0’
£ 10° 1 Z2% E 10* 4 with reduction rules
GE) with reduction rules | % GE)
E, E,
= 104 T 'c 103)
c c
2 - =
° no reduction rules ° no reduction rules
S S
5 10°1 5 107 1
& &
2 25 3 35 4 45 5 2 25 3 35 4 45 5
average vertex degree average vertex degree
Figure 6.10: Running time for the implemented Graph Bipartization -algorithms on a

graph with 20 vertices and varying average vertex degree. Note how the overhead due the
data reduction algorithms causes the total running time to increase up to 3 and 10 tnes

for opt-Edge Bipartization and opt-Vertex_Bipartization , respectively.

[%2] (%]

(3] 5]

§ opt-Edge Bipatrtization _§ opt-Vertex Bipartization

o 10 8 5 10*1

< =

% 108 - no reduction rules % 2:3 10* no reduction rules

(]]

(%] (%]

g 10° 1 with reduction rules g 1.7 10*1

% % with reduction rules
> 2 25 3 35 4 45 5 = 2 25 3 35 4 45 5
© average vertex degree © average vertex degree
Figure 6.11: Search tree size for the implemente®raph Bipartization -algorithms on a

graph with 20 vertices and varying average vertex degree. The reduction rules turn outo
be most e ective for graphs with an average vertex degree of 3, especially inhe case of
opt-Vertex Bipartization

deterministic and therefore only executed once, a randomized variant that can be executed
multiple times would probably perform as well as the recoloring heuristic.

The running time required for opt-Edge Bipartization and opt-Vertex Bipartization

on a graph with 20 vertices and varying average vertex degree is shown in Figar6.10, the
corresponding search tree sizes are given in Figure 6.11. Since the search trezes correlate
with the running time of the algorithms, only the measured running times of the subsegent
experiments are shown in this work.

Figure 6.12 displays the exponential increase in running time forGraph Bipartization
when the number of total vertices in the RG increases linearly. In Figures 6.13 and.14, we
show the measured running times for the experiments on RBGs.

The average reduction rule usage was measured to be as follows:

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 95
= opt-Edge Bipartization (%) opt-Vertex Bipartization
g 10 - E 10°
o 2 :
E 10° no reduction rules g 10° 1 Pedudanyies
= 2
£ 10°1 £ 10%1
c c
c
S 10 S 10°
v S
g 108 with-reduction rules S 12 with- reduction rules
2 g
10 15 20 25 30 35 10 15 20 25 30 35
number of vertices number of vertices
Figure 6.12: Running time for the implemented Graph Bipartization -algorithms on a
graph with average vertex degree 3 and a varying total number of vertices.
opt-Edge Bipartization opt-Vertex Bipartization
2000+ 4 10
Ty # de-bipartizing edges: 7 T # de-bipartizing vertices: 7
E. 15001 E 3 10t
Q [}
£ 2 £
= 1000~ W/ > 2 10°-
£ 3 £
= =
S|t
4 5 6 7 8 4 5 6 7 8
average vertex degree average vertex degree

Figure 6.13: Running time for the implemented Graph Bipartization -algorithms on
graphs with 20 vertices and varying average vertex degree. The respective running ties
increase only linearly with the average vertex degree for a xed number of de-bipartizig
elements.

Rule | opt-Edge Bipartization opt-Vertex Bipartization
1 6.1% 25.9%
2 68.1% 33.7%
3 (0) (0)

4 (0) (o)
5 15.2% 8.6%
6 (0) (0)
7 not applicable 10.8%
8 10.7% 5.5%
9 not applicable 5.6%

Discussion The rst observation we can make in Figure 6.10 is that although all reduction
rules that were turned on during the measurements were used (with a relative usage ofore
than 5%), the running times for both the opt-Edge Bipartization and the opt-Vertex
Bipartization solving program are slower by a factor of almost ten with reduction rules

96 CHAPTER 6. GRAPH BIPARTIZATION

— . # of de-bipartizing vertices: 7 -
£ £ X6
° ° // X5
E E
> > 10° 1 4
£ £ 3
[[y
[[y
2 2 5
(D] (]
< &
g 1] 1
@ ©

10 14 18 22 26 30 34 38 10 14 18 22 26 30 34 38

number of vertices number of vertices

(not including de-bipartizing ones)

Figure 6.14: Running time for the implemented Graph Bipartization -algorithms on
graphs with an average vertex degree of 3 relative to the total number of veites.

turned on. This can be explained by looking at the corresponding tree-size in Figure @1:
The reduction rules are only capable of at best halving the total search tree size, blas

is to be expected from the runtime-analysis in the previous section|they consume more
time than they can make up for by this reduction. Another interesting fact to note in
Figure 6.10 is the exponential increase in running time with a linear increase athe average
vertex degree|at rst sight this would not be expected since the algorithms' and reducti on
rules' running time did not indicate such a behavior in our previous run-time analysis At a
second glance, however, note that the more \dense" the RGs become in terms of edges, the
average number of deleted edges/vertices required to bipartize the graph increases as Wl

Figure 6.14 shows that|as was to be expected|the average running time for our alg orithms
increases exponentially with the total number of vertices in the RBG. Note, hovever, that
this increase is not as bad as would be expected: In a graph with 5 more vertices tha given
graph, a complete search of all possible solutions to a giveGraph Bipartization problem
would approximately take 2° = 32 times as long as for the original graph. The observed
increase however is by only about a factor of 10 (instead of 32) for 5 additiorlavertices. This
gure does not even consider that, as in the previous experiments, the average size dfig¢
optimal solution increases with the total number of vertices. Once we take accounof this
fact by looking at the algorithms' running times when the number of de-bipartizing elements
is kept constant (Figure 6.14), we see that the observed increase-factor is everwler: For
Vertex Bipartization , it varies from about 1.3 for 5 additional vertices (1 de-bipartizing
vertex) to 2 for 5 additional vertices (7 de-bipartizing vertices).

In Figure 6.13 we can see|as was to be expected| that for a xed number of de-bipartizing
elements, the algorithms' running times increase only linearly with the averagevertex degree
(i.e., total number of edges).

Overall, the developed algorithms show a rather long running time already for moder
ately sized RGs and RBGs. In some preliminary tests foropt-Edge Bipartization , the

33E.g., in the experiments for opt-Edge Bipartization on a RG with 20 vertices, an increase in the
average vertex degree by 0.5 increased the size of the average optimal solution by approximately 4 edges.

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 97

Max2Sat software by Gramm mentioned at the beginning of this chapter outperformed
the opt-Edge Bipartization algorithm by a factor of up to 10 on the random graph in-
stances. Bear in mind however, that graphs corresponding to SNP problems may have sem
special properties we might not expect in random graphs?# Intuitively, it seems likely that
the special structures such as separators, long paths, etc. are not present initigl in the
RGs and RBGs constructed, but rather emerge close to the leafs of the search tree, when
the analyzed graph is small and many edges/vertices have already been removed frdtn In
order to test this hypothesis, a variable was added to the implementation couring how close
to the leaf the reduction rules concerning separators could be applied, it was possible tsee
that these reduction rules arel|if at all|mostly applicable about 3 to 4 levels up fro m a leaf
on a RG with 20 vertices and an average vertex degree of 3. The application of reduon
rules (especially those separating the graph into several small subgraphs) is Wwever most
e ective close to the root of the search tree.

As we shall see in Section 7.4, the reduction rules developed in this section can|althoub
being hardly applicable to random graphs|signi cantly reduce the running time of opt-
Edge Bipartization and opt-Vertex Bipartization on graphs obtained from the SNP
analysis problems of the next chapter, enabling us to bipartize these graphs even when they
contain a few hundred vertices.

34The reasons for this will be discussed later in Section 7.4.

98

CHAPTER 6. GRAPH BIPARTIZATION

Chapter 7

Using Graph Bipartization in
SNP Analysis

In the previous chapter, algorithms for opt-Vertex Bipartization as well asopt-Edge
Bipartization were developed. It was already mentioned then that graph bipartization
has a broad eld of applications. This chapter will discuss two recently posed problera
in SNP analysis that will turn out to be closely related to Graph Bipartization . The
rst problem|analyzed in Section 7.2|concerns the problem of selecting fragments from a
diploid! DNA in order to obtain two consistent haplotypes during sequencing. Section 7.3
concerns a more indirect approach to detecting SNPs: Based on the assumption that SNPs
have evolved according to a perfect phylogeny (see Chapter 5), we use a set of genadgp
which are then resolved into the|presumed|underlying haplotypes of the genotype set.

At the end of this chapter, we test the Graph Bipartization algorithms developed in the
last chapter on graphs arising from SNP problems, showing that they are often cafae of
e ciently solving these graphs even if they contain a few hundred vertices.

7.1 Introduction and Overview of Results

Modern DNA sequencing techniques are only capable of sequencing DNA fragments of at
most 1 000 bases in length. If the DNA of a diploid organism is sequenced we obtaglightly

di erent fragments at SNP sites. However, for reassembly of the fragmentstiis vital to be
able to distinguish fragment di erences due to SNP sites in the diploid source sequencedm
those that are caused by errors in the sequencing process. In order to separate the tfrom
each other, we will use a minimality argument (i.e, most fragments are pesumed to have
been read correctly) proposed in [RBIL0O2], leading to theMinimum SNP Removal and
Minimum Fragment Removal problem (De nitions 7.2 and 7.3, respectively). The latter
problem is shown to be parameter equivalent toVertex Bipartization in Corollary 7.6.
For the former problem we show that this problem is at least as hard a€dge Bipartiza-

tion (Theorem 7.5). For reasons that are discussed at the end of Section 7.2, a reduction
from Minimum Fragment Removal does not appear to be possible, leaving it an open
problem to nd an upper hardness bound for Minimum SNP Removal

1Recall from Chapter 2 a human cell contains two copies of each non-sex chromosome.

99

100 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Section 7.3 uses a di erent approach to obtain SNP data: For current sequencing techniques,
it is often infeasible (e.g., due to prohibitively high cost and labor) to directly sequence hap-
lotype data. Instead, genotype data is obtained, i.e., we know for certain sis that a SNP
occurs but cannot tell which haplotype actually shows which base. Given a whole set of
genotypes, however, it has been proposed to infer the haplotypes that probably cause the
observed genotypes by assuming that all haplotypes must have evolved according toper-
fect phylogeny [Gusf02] (the reasons to justify this assumption are givenn Section 7.3).
Analogously to the fragment removal problems, we analyze the complexity oftie problems
that arise when dealing with reading errors and/or the case where some haplotypes fka not
evolved in a perfect phylogeny. It will be shown that the Minimum Genotype Removal
problem (De nition 7.8) is at least as hard as Edge Bipartization (Theorem 7.9) and
the Minimum Site Removal problem (De nition 7.10) is parameter-equivalent to Ver-
tex Bipartization (Theorem 7.11). Due to analogue reasons as in the case Bfinimum
SNP Removal , the existence of a parameterized or parameter-preserving reduction from
Minimum Genotype Removal to Edge Bipartization remains open.

Concluding this chapter, we test the algorithms for Vertex Bipartization that were
developed in the last chapter on some instances dflinimum Fragment Removal and
Minimum Genotype Removal , showing that these two problems can generally be e -
ciently solved even if the correspondingVertex Bipartization instance contains a few
hundred vertices.

7.2 SNP Haplotype Assembly

Current methods in DNA sequencing are not powerful enough to sequence a whole strand
of DNA but only fragments of at most 1 000 bases in length. In order to still be able
to sequence longer strands of DNA, a technique calledhotgun sequencingnvented by
Sanger around 1980 (e.g., see [SCHHP82])|is employed. Shotgun sequencing proceeds
as follows: The source sequence is rst copied many times using PGRand then more or
less randomly broken into fragments, e.g., using DNA cutting enzymes called endonuclees.
These fragments are then sequenced individuall§. Afterwards, the resulting small sequences
need to be reassembledio obtain the whole DNA strand's sequence. Assembly is a com-
putationally quite involving task that has, e.g., to deal with read errors of the fragments
obscuring a correct alignment or with repeated regions in the DNA strand that produce
very similar fragments. In order to overcome some of this di culties, fragments are often
generated in pairs and therefore contain some extra information concerning their elative
distance on the source sequence (this technique is known dsuble barrel shotgun sequencing
[RBWL95, WeMy97]).

Recall that the human genome is diploid. Therefore, when sequencing a human genotype,
due to the high similarity in the two chromosomes and errors in the sequencing andssembly
process, it is often not possible to directly infer the pair of haplotypes that gves rise to the
observed genotype from the given fragments. Since for a certain location orhé genome,
a fragment can take at most two dierent values (e.g., in a heterozygous SNP $g), a
fragment from the sequencing read will from now on be represented as a string ovehe
alphabetf0;1;?g. The symbols 0 and 1 will be used to represent the two di erent possibilities

2For more information on shotgun sequencing see, e.g., [WeMy 97] or Chapter 7 of [Wate95].

3For more information on PCR, refer to the footnote concernin g PCR on page 8.

4Details on the sequencing of individual fragments such as se quencing by restriction endonucleases, chem-
ical cleavage, or the chain-terminator method may be found, e.g., in Chapter 28 of [VoVo095].

7.2. SNP HAPLOTYPE ASSEMBLY 101

a 27220110201 a i ¢
b 0011201010 “

C 1100122201 _ b b
d 1?702110101 Af

e 2200110107

f 0012201020 d 9 /
9 0011002007

h 0221001720) 1100110101
i 2221222010 ©) 0011001010

Figure 7.1: An example for Minimum Fragment Removal on a set of fragments: The
upper left matrix represents the reads of 9 fragmentsa;:::;f. From this matrix, the frag-
ment con ict graph Gg is constructed (rst arrow). Then, Gg is bipartized by removing the
vertex g. From the resulting bipartite graph, we can directly infer which fragments belong
to which haplotype from the coloring of the respective vertices. The resulting halotypes
when corresponding vertices are merged are shown below the con ict graphs (third are).

for a base at a certain SNP site. If a read for a certain site has not been madeit is
represented by a \?". In order to obtain (infer) the underlying pair of haplotypes from a
set F of fragments, [LBILS01] introduces the so-calledragment-con ict graph Gg.

De nition 7.1 (Fragment-Conflict Graph):

Given a setF of fragments, the fragment-con ict graph Gg represents each fragment as a
vertex, and connects two fragmentsa and b by an edge if there exists a SNP site for which
a and b have explicitly di erent © reads.

It is clear that in order to infer a pair of haplotypes from the given fragments, we must be
able to partition the set of vertices in Gg into two subsets such that there exist no con icts
(i.e., edges) between two vertices in the same subset. This is exactly the case whé&g is
bipartite; which we shall use to expose the following two problems' relatimships to Graph
Bipartization

De nition 7.2 (Minimum SNP Removal):
Given a set of fragments, what is the minimum number of SNP sits that need to be ignored
in order for the fragments to be resolvable into two haplotygs?

De nition 7.3 (Minimum Fragment Removal):
Given a set of fragments, what is the minimum number of fragmets that need to be removed
from the set in order for the remaining fragments to be resolable into two haplotypes?

An example for Minimum Fragment Removal and the resulting haplotypes is given in
Figure 7.1. We have already shown that in order to be able to reassemble the indidual
fragments from the sequencing process, the corresponding con ict-graph must be bipartt

5Note that this will be the case for many sites, as the length of a read is generally a lot shorter than that
of the actual sequence
6].e., if either a or bis a \?", the two fragments are not connected.

102 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

In the remaining part of this section, we show that this leads to a close linkage btween
Graph Bipartization and Minimum SNP Removal /Minimum Fragment Removal
using the following lemma:

Lemma 7.4 For any given graphG = (V;E), it is possible to construct a set~ of fragments
over the alphabef 0; 1; 2g in polynomial time such that the con ict graph Gg is isomorphic’
to G.

one corresponding to a certain vertex) of lengthm, such that the ith site in the fragment
representingv; has value \1", all fragments representing vertices to whichv; is connected by
an edge take value \0" for sitei, and all other vertices take value \?". Then, if we construct
Gg for the fragments, we obtain a graph with n vertices where two vertices are in conict
(i.e., connected by an edge) if and only if they were connected by an edge in the original
graph.

Theorem 7.5 Vertex Bipartization is parameter-preservingly reducible toMinimum
Fragment Removal . Edge Bipartization is parameter-preservingly reducible toMini-
mum SNP Removal .

Proof In the reduction of Lemma 7.4, we obtain a set of fragments where there is exagtl
one fragment for every vertex in the original graph and exactly one SNP site caesponding
to every edge in the graph. This \1:1-relationship" ensures that if the set of fragmeis can
be resolved into haplotypes by removing at mostk fragments (SNP-sites) from it, then the
corresponding con ict graph (which is isomorphic to the graph we want to bipartize) can
be bipartized by deleting at most k vertices (edges) from it. Note that the reduction in
Lemma 7.4 is clearly computable in polynomial time with respect to the size 6the input
graph.

From the above theorem, we can deduce the following corollary:

Corollary 7.6 Minimum Fragment Removal is parameter-equivalent to Vertex Bi-
partization

Proof The parameter-preserving reduction from Vertex Bipartization to Minimum
Fragment Removal is given by Theorem 7.5. For the reverse direction, note that each
fragment in a given Minimum Fragment Removal instance always corresponds to ex-
actly one vertex in the fragment-con ict graph. Therefore, if the conict graph can be
bipartized by deleting at most k vertices from it, deletion of the corresponding fragments in
the given Minimum Fragment Removal instance allows the fragments of this instance to
be resolved into haplotypes.

The above corollary 7.6 allows us to use thé&/ertex Bipartization -algorithm from Chap-
ter 6 to e ciently solve this problem, as will be shown later in Section 7.4.

Note that a result similar to Corollary 7.6 for Minimum SNP Removal (i.e., the reduction
to Edge Bipartization) is all but obvious and therefore remains an open problem in the

“Two graphs Gi = (V1;E1) and G, = (V2, E>) are called isomorphic if there is a bijection : Vi ! Vs
such that fva;vpg2 E1 ,f (va); (vp)g 2 Es>.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 103

scope of this work: E.g., observe the edggb; gy in Figure 7.1. The 9th SNP site is \respon-
sible" for this con ict edge. However, observe how by ignoring this site for the constuction

of the con ict graph (in order to delete fb;gg), we implicitly delete the edge f h;ig as well.
There are other problems as well, e.g., multiple SNP sites causing the same edge ihet
conict graph (e.g., the edgefb; gy is caused by the 3rd, 4th, and 7th SNP site).

7.3 Inferring Haplotypes from Genotypes

At the beginning of this work we have introduced SNPs, variations in a single nicleotide
along multiple copies of the same DNA segment of di erent organisms and withinthe hap-

lotypes of a diploid organism. Today, sequencing techniques that are commonly usedh i
practice yield genotype instead of haplotype information. The direct inference of halo-

types is|although possible [PBHO1]|often not considered for practical use due to cost and
speed considerations. The problem that arises with this is the following: Techniges that
only provide genotype instead of haplotype information give the bases for bth SNPs at a
certain site but do not specify the chromosome on which each of them appears. This no
problem if two haplotypes are homozygous (i.e., they contain the same base ahé given
site). If, however, the genotype is heterozygous, problems arise as becomes cleamni the

following example: Consider a genotype sequencéXXG , where X stands for a SNP in
the individual haplotypes that contains A in one haplotype and C in the other. Then, the

observed genotype can be resolved into haplotypes in four di erent ways:

TAAG TCCG
| . | .

TXXG 1 qeegr TXXG 1 qaaG
TCAG TACG

. ' .

TXXG TACG ¢ OF TXXG 1 qopg

Observe that as in the above example, a SNP site in a single genotype may show most

two di erent bases. We have already mentioned in Chapter 2 that even throughout a whole
set of genotypes, SNPs often occur in only two variations (this is con rmed by thedata used
for practical tests in Section 7.4). For each SNP site, we shall therefore ladd one of the two
possible variations \0" and the other one \1", allowing us to represent genotype information

for a SNP site by one of three states:

\0" represents a site where a 0 occurs in both haplotypes,
\1" represents a site where a 1 occurs in both haplotypes, and

\2" represents a site where a 0 occurs in one haplotype and a 1 in the other.

A genotype representingm di erent SNP sites can then be written as a row vector (genome
vector) with m entries from the alphabet f0; 1;2g. A haplotype vector (in this context, we
will often use the term \haplotype" for means of abbreviation) is a row vector with entries
from the alphabet f 0; 1g. This section will deal with the problem that, given n genotypes of
length m, we would like to nd the corresponding haplotypes to those genotypes such that
for each observed genotype the result provides two haplotypes thaexplain this genotype.
As has been illustrated above, this is not possible without any further constrants (recall
that there were four ways to resolve even a single genotype into two haplotygs). It has
been suggested as a reasonable constraint that the resulting haplotypes must obeynzodel
of perfect phylogeny [Gusf02]. This model will predict the correct haplotypes for he given
genotypes under two assumptions:

104 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

1. The most arguable assumption is that there is an absence of recombination. Under
this assumption, each haplotype sequence is derived from a single ancestor in the
previous generation and their evolutionary history will form a tree structure [Huds90].
The absence of recombination is justied by Gus eld by the biological observation
that often, in long blocks of genetic data, recombination seldomly occurs. It seems
that including recombination into the models for inferring haplotypes will make the
corresponding computational problems a lot harder to solve as a whole new multitude
of combinatorial unknowns (i.e., the sites of recombination) are introduced.

2. The so-called \in nite sites" assumption: Since we cannot detect multiple mutations
that occurred during evolution at a single SNP site, the assumption is made that
at most one mutation has occurred within the evolutionary timeline for that SNP.
According to [Gusf02], empirical data supports this assumption.

Gus eld [Gusf02] furthermore provides three reasons to justify a model of perfect pylogeny,

the most convincing of which is a success in practical applications: The program PASE,

one of the rst available programs for inferring haplotypes from genotypes,generates data
most e ectively, i.e. the predicted haplotypes are often correct, if it is assumed bat the

generated haplotypes obey a model of perfect phylogeny [SSDO1].

An e cient algorithm to solve the problem of inferring haplotypes from genotyp es in order to
obtain a perfect phylogeny was given by Eskin, Halperin, and Karp in [EHKO3](experimental
studies of the algorithms are given in [HaEs03]). This algorithm directly relates the inference
of haplotypes from genotypes toGraph Bipartization problems, as this section will show.
For a formal de nition of the problem, we assume as was justi ed above that there are only
two possible nucleotides for any given SNP sitg one of these two possibilities is labeled 1,
the other 0. A genotype (made up of two haplotypes) is then represented as a row veato
representing m sites with entries from the alphabet f0;1;2g as already introduced above.
For example, if the haplotypes (01011101001011)and(10011000111110) OCCUrin
a genome we would only see the row vectory2011202221212). Each pair of haplotype
vectors that generates the given genome vector is callecbmpatible with that genome vector.
There is, as has been pointed out at the beginning of this section, quite a multitude bways
to resolve a genome vector into two compatible haplotype vectors (hence the resttion to a
perfect phylogeny of the individual haplotypes). In this work, we will be seekng for a way
to solve the following problem:

De nition 7.7 (Perfect Phylogeny Haplotype Problem)

Input: A set of n genotype-representing row vectors, each of lengtm.

Question: Is it possible to resolve the genotype vectors into a set of platype vectors such
that the haplotypes have evolved according to a perfect pbgeny scheme?

For example, given the genotype vectors ¢o1), (0o21), and (111), can the underlying
haplotypes have evolved according to a perfect phylogeny? As we will see later ithis
chapter, this is not the case (see Footnote 9 on page 105). The algorithm fro [EHKO3] is
introduced in very much detail in the rest of this section because it will provide abasis for
the hardness proofs of Theorems 7.9 and 7.11. In order to present the algorithm, emwill
start with some necessary terminology and observations.

If we are given n genome vectors of lengthm (i.e., representing m site), we may write
this input as an n m matrix A (often referred to as\SNP matrix" in the literature). For

8 According to the authors of [HaEs03], this is su cient for mo st cases of polymorphic sites.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 105

developing an algorithm to solvePerfect Phylogeny Haplotype on a given SNP matrix,
the following observations are crucial: Given the row vectors induced by two colums c;
and c; (i.e., two SNP sites) in A. Based on the these row vectors, we can make the following
observations regardingc; and c;:

1. Arow vector that does not contain a 2 can unambiguously be resolved into twodentical
haplotype vectors (e.g., (0 1) must be resolved into (0 1) and (0 1)).

2. A row vector (02) must be resolved into two haplotype vectors (co) and (o1). The
analogue holds true for the row vectors @ 2), (20), and (2 1).

3. The row vector (2 2) can be resolved in exactly four ways, either

(11) (00) (01) (10)
| . | . | . | .
(22)! (00) (22)! (11)° (22)! (10’ or (22)! (01) "
The rst two ways are called equal resolution the second twounequal resolutionof ¢;
and c,.

Following [EHKO3], instead of saying that a row vector \can be resolved ino" certain vectors
we shall say that it induces those vectors from now on.

Due to the assumption that the inferred haplotypes have evolved according to a perfect
phylogeny, note that two columns cannot be resolved equally and unequally for two di
ferent genomes: If this were the case, the resulting haplotypes would induce the row vec-
tors (00),(01),(10),and (11)meaning they would induce an E M (see De nition 5.8).

In Theorem 5.9, we have already shown that it would then be impossible to constict a per-
fect phylogeny for the haplotype vectors, even if inversion of the labels 0 and were allowed?
More generally, if the given row vectors imply in any way that the genotype \ectors must be
resolved into haplotypes that induce the row vectors (00), (01), (10), and (1 1), there can
be no perfect phylogeny for the haplotypes underlying the given genotypes. For exame)
this would be the case if two columns in the genotype matrix induce the row vectorg o 2)
and (12).

We will now introduce the actual algorithm for Perfect Phylogeny Haplotype , which
is proven in [EHKO3] to run in O(nm?) time for n genotype vectors consideringm sites.
Let the genotype vectors be given as am m input matrix A. First, it is checked whether
there are two columns inA that induce an E M. This must not be the case, since then is
no perfect phylogeny for the haplotypes. Following this check, each column wherehe rst
row not containing a 2 contains a 1 is inverted|this inversion operation is do ne so that we
can assume alirected perfect phylogeny? for the evolving of the haplotypes [EHKO03]. The
main key to the algorithm in [EHKO3] is the resolvance of genotypes into hapbtypes by
determining where to place individual haplotypes with respect to each other in the perfect
phylogeny. For this placement, [EHKO03] develops the following intuitive notation concerning
the relationship of two columnsc; and ¢, in A:

Column c; is said to strongly dominate column c; if ¢; together with ¢, induces the row
vectors (00), (10),and (11). The term \strong domination of c; overc," re ects the

fact that since we have a directed perfect phylogeny, the mutation represented irt;
took place in the evolutionary tree earlier than in c,. This relationship between c;
and c; is designated by writingc; ¢ .

9This answers the question posed in the example on page 104, be cause the presented genotype vectors
induce an E M in the rst two SNP sites.
10Recall the corresponding de nitions in Section 5.2.

106

CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Two columns ¢; and ¢, are calledsiblings if they induce the row vectors (00), (10)
and (o1). A sibling relationship between two columns denotes the fact that the
mutation in site ¢; and the one in site c; took place independently, i.e. in di erent
branches of the evolutionary tree. A sibling relationship betweenc, and c;, is written
asc .

Column ¢; is said to weakly dominate column ¢, if ¢; induces the row vectors (0 o)
and (10) with c,. For a weakly dominating c;, we cannot directly determine whether
the mutation in ¢; took place before the one inc, or in a di erent branch. However,
we do know that this mutation can not have taken place after the one inc;, in the same
evolutionary branch. A weak domination of ¢, by ¢, is designated by writingc; ¢ .

Using these relationships, the algorithm proceeds o\ as follows, either creating a matrix B
containing the haplotypes that explain the genotype matrix A or determining that A cannot
be resolved into haplotypes that follow a perfect phylogeny:

1. Delete any columns inA that have a 2 in exactly the same rows and moreover in-

duce (11). Call the matrix thus obtained A° This may be done because the {2)
row vectors in these columns will have to be resolved equally in order to be able
produce a perfect phylogeny from the haplotypes-

. Choose a pivot columncdin A°so that for each columnc 6 €in A, eithere ¢ & ¢,

or e cholds (such a column can always be found [EHKO03]}?

. Resolve every column inA° that is strongly dominated by € equally with € and every

column in A%that is a sibling with € unequally with €.

For resolving the weakly dominated columns, the following graphG = (V;E) with
labeled edges is constructed:

The vertex setV is the set of sites.

There is an edge labeled 1 between the vertex representing and every vertex
that represents a site that is weakly dominated byec-

If there are two sites ¢; and ¢, di erent from ~¢ such that these three columns
induce the row vector (222) and ¢; and ¢, induce (1 1), the vertices in V repre-
senting ¢; and ¢, are joined by an edge labeled 0.

If there are two sites ¢; and ¢, dierent from ~¢ such that these three columns
induce the row vector (222) and ¢; and ¢, are siblings, the vertices inV repre-
senting ¢; and ¢, are joined by an edge labeled 1.

The columns are then resolved equally if the two respective vertices iG are connected
by an edge labeled 0 and unequally if they are joined by an edge labeled 1. Con icts
may only arise if G contains a cycle that has an odd number of edges labeled 1, in
which case the algorithm terminates with failure. Components inG from which there
is no path to the vertex representinge-may be resolved arbitrarily with respect to & If
no columns can be resolved with respect t@ in this step, call the resulting matrix A%
and proceed to the next step.

11 Note how an unequal resolution leads to the appearance of a - matrix in the resulting haplotype matrix.

12 As mentioned above, the key to this algorithm is to determine how di erent haplotypes are related in
a perfect phylogeny due to comparison of di erent sites. The next step will now resolve individual columns
with respect to the pivot column.

7.3.

INFERRING HAPLOTYPES FROM GENOTYPES

107

4. 1If A%still contains unresolved haplotypes, the algorithm is recursively applied, stating
from Step 1. Otherwise, A%is put out as the resulting haplotype matrix B.

As mentioned above, the correctness of this algorithm as well as its running timés proven in
[EHKO3]. We shall now illustrate the algorithm by an example, using the genoype matrix
0 1

5919015
— 2012220
A= @0210222A
1012010
0010120
as an input. The columns ofA are referred to ascy;:::;c;. Sincecs and ¢g contain a 1 in
their rst row not containing a 2, the rst step is to invert c¢; and cg, yielding
0 20200001
0. @3005290A
AT= 62002527
1002000
0000120

No columns need to be deleted in Step 1. Now, for
Using the terminology given on page 105, we have;
and ¢;

Step 2; is chosen as the pivot column.
C2,C C3,C GC,C G5 C G,

c;.1® Step 3 of the algorithm given above can immediately resolve the pivoic;

with ¢, (unequally), with ¢4 (equally), with c¢s (unequally) and with c; (unequally), obtaining
0

0 ,05000018 2020000
0599983
Ej 1002002 % 0000220
20022200, then Bs 140012200+
0200222 0200222
1002000 1002000
0000120 0000120
0 20200001 20200001
0100002 0100002
1001002 1001002
then 9869538 , and nally 20069549
0200222 0200222
1002000 1002000
0000120 0000120

The arrows indicate the resolvance of a genotype into two haplotype$? Moving on to the
graph construction in Step 3 of the algorithm, the following graph is constructed:

OEORONONONBONCO

This graph is bipartite, so we can resolvec; unequally with ¢z and then unequally with ¢,

obtaining

1

% 0010000 000100001
& 1000000 1000000
0100001

95898682 1001000
0000110

0000110, andthen g 9889558
0200222 0200222
1002000 1002000
0000120 0000120

BE.g., ¢1 and ¢; induce the row vectors (10) (rst row), (
14 Note that a genotype is only explicitly splitted into two hap
the resolvance induce the row vector (22).

00) (seventh row), and (o 1) (fourth row).
lotypes if the respective columns used for

108 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

After the rst round of the algorithm, the resulting matrix still contains r ows with more than
one 2. Hence, we have to apply the algorithm recursively to the last result and choesc;
as the pivot column. We then havec, ¢4, ¢ G, C; Cg andc, ¢;. Using these
relationships, we can fully resolve our genotype matrix into

0 1
0010000 060100001 060100001
1000000 1000000 1000000
0100001 0100001 0100001
1001000 1001000 1001000
0000110 0000110 0000110
1001000, then Bioo01000C, and nally 1001000
% 000 2 0000112 0000110
&0100022 0100002 0100001
1002000 1002000 1002000
0000120 0000120 0000120

which implies the nal haplotype matrix

060100001

1000000

0100001 0
1001000 2010000
9889538 0100001

r, with li hapl remov B =

0000110 OF wit duplicate haplotypes removed, 1001000
2;00801 0000100
1089088 0000110
0000100

0000110

Observe that the haplotypes in B explain all genotypes inA®

2020000= 0010000 + 1000000
2202002=0100001 + 1001000
2002220=0000110 + 1001000
0200222= 0000110 + 0100001
1002000= 1000000 + 1001000
0000120= 0000100 + 0000110

Furthermore, the explaining haplotypes have evolved according to a directed perfect phylo
geny:

0000000
00
/ 0000000
1006000 { 0000000
1001000 { 000000 0000000
0100001 : C

0000110 0010000

As we have seen, the algorithm given in [EHKO03] provides a way to construct the hajpltypes
from given genotypes in polynomial time. However, real biological data wil often not t the

model of a directed perfect phylogeny. If the algorithm determines that there exists novalid
resolution of the given haplotypes, we might therefore ask what minimum numler of sites
or genotypes would have to be removed in order to t the model of a perfect phylogenyf
the input matrix is just binary, i.e., it contains no entry equal to 2, we know fr om Chapter 5
that the haplotypes will only form a perfect phylogeny if they do not induce an EM (s ee
De nition 5.8). If they do induce an E M, we have given some e cient xed-parameter

algorithms for removing a minimum number of species (genotypes) or charactergsites)
from the input matrix so that we are able to infer a perfect phylogeny in Chapter 5. We
have already seen in this chapter that if the input matrix contains entries equal to 2 the

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 109

problem of being able to construct a perfect phylogeny can|besides the avoidance of an
induced E M|be related to a graph not containing a cycle of odd length 5 (where an edge
may have a length of either zero or one). We can directly relate this problem toGraph
Bipartization by simply replacing each edge of length zero with a path of length twd®

We will show in the following two subsections that the problemsMinimum Genotype Re-
moval and Minimum Site Removal are|from a parameterized point of view|at least
as hard asEdge Bipartization and Vertex Bipartization , respectively. For Minimum
Site Removal , we will even show that it is parameter-equivalent to Vertex Bipartiza-
tion .

7.3.1 Minimum Genotype Removal

Note that this subsection makes extensive use of the terminology introduced in Seahn 7.3.
The algorithm presented there to solve thePerfect Phylogeny Haplotype problem
(see De nition 7.7) was not always able to nd a haplotype-resolution for the given geno-
types because a graph constructed from the input data proved not to be bipartite. We
therefore seek a minimal number of genotypes to be removed from the dataset in der for
the haplotypes to be constructible.

De nition 7.8 (Minimum Genotype Removal Problem)

Input: A ternary matrix A of dimensionn m and an integerk.

Question: Is it possible to delete at mosk rows in A so that the genotypes represented in the
resulting matrix A° can be resolved into haplotypes that have evolved accorditmya perfect
phylogeny?

In [EHKO3], the authors give a proof for the MAX-SNP-hardness of the Minimum Geno-
type Removal problem on ternary matrices, meaning there is no PTAS for this problem
unlessP = NP (see the footnote on page 71 for the de nition of PTAS). Moreover, a proof is
given that an -approximation algorithm for the Minimum Genotype Removal problem
implies the -approximability of the Edge Bipartization problem, for which no such ap-
proximation is known (see Chapter 6). With some slight modi cations, the approximation
preserving reduction from [EHKO3] can be turned into a parameter-preserving reduction.

Theorem 7.9 Edge Bipartization is parameter-preservingly reducible toMinimum Ge-
notype Removal

Proof The reduction relies on the following idea: The presented algorithm forPerfect
Phylogeny Haplotype constructs a graph from the given genotypes, where the vertices
of the graph correspond to sites and the edges to the relationship of the sites deteined
by the individual genotypes. The graph was bipartite if and only if these genotypescould
be resolved into haplotypes that constitute a perfect phylogeny. Given an insance G;k)
of Edge Bipartization , we will now simply build a matrix A consisting of genotypes that
will force the algorithm to construct a graph that is isomorphic'’ to G. Furthermore, each

15These lengths are not to be confused with the edge-weights us ed in the opt-Edge Bipartization re-
duction rules.

16 Note that this does not signi cantly increase the running ti me of the branch&bound algorithms from
the previous chapter due to Reduction Rule 2 presented on pag e 80.

17Two graphs Gy = (V1;E1) and G; = (V2, E») are called isomorphic if there is a bijection : Vi ! V;
such that fva;vpg2 E1 ,f (va); (vp)g 2 E>.

110 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

genotype in A that is suited for deletion will correspond to exactly one edge inG. Then,
removing a genotype fromA corresponds directly to removing an edge fron(.

For a given instance of Edge Bipartization , let G = (V;E) be its graph whereV =
fvi;iii;vangand E = feq;:ii;eng (note that n = jVjand m = jEj). An m(n+1) (n+1)
matrix A = (&;;) is now constructed, starting with a matrix of zeros and then applying the
following algorithm:

Algorithm: Edge Bipartization to Minimum Genotype Removal
Input: A graph G = (V;E) and a parameterk
Output: A parameter-equivalent instance A

of Minimum Genotype Removal

o1 for i 1.::m(n+1) do

02 Ai:n +1 2

03 for i 1:::ndo

04 for j 1:::m 1do
05 Am i 2

o6 for each edgeg = fvy;vpg do
07 A+ mna 2

08 A+ mn;b 2

For illustration purposes, Figure 7.2 shows a graph and the corresponding mex A gener-
ated by this algorithm, which works as follows: Lineso1 and 02 of the algorithm write a 2 into
every row of the last column of A. By lines 03 to 05, we ensure that each pair of the rstn
columns induces the row vectors { o) and (o0 1). Therefore, each of the rst n columns are
pairwise siblings and will hence have to be resolved unequally according to thPerfect
Phylogeny Haplotype -algorithm. Lines 06-08 encode the actual graph intoA. During
the following proof, we will say that an edge in G corresponds to a row in the matrix A if
two 2-entries were inserted in that row due to linesos-08 of the algorithm.

As was mentioned above, the rstn columns are pairwise siblings. Column (+ 1) contains
just 2's and weakly dominates all other columns, it will therefore be chosen ashe pivot
column c for the Perfect Phylogeny Haplotype algorithm. The algorithm will then

proceed as follows: Since all columns are weakly dominated ly the graph Gago constructed
for resolving the weak domination relationship betweenc and the rst n columns of A will

contain a vertex for each column. This includes a vertex forc, however, this vertex may be
omitted since it will not be connected to any other component in Gago:'8 So, in total, we
have as many vertices inG as in the original graph G from which A was constructed. Two
vertices u and v are connected inGaygo if and only if they were connected inG, and the
corresponding columns have to be resolved unequally. Note that since for each edge @)
we have a row inA, the constructed graph Gaygo is isomorphic to G. Then, as is proven in
[EHKO3], we can only resolve the graph if it does not contain any odd cycles, &., if it is
bipartite.

Now assume that there exists a xed-parameter algorithm for the Minimum Genotype
Removal problem. For a given instance G; k) of Edge Bipartization we can construct
the matrix A using the algorithm above in polynomial time, more precisely we need

O(Vij+iVj JEj+ JE))

18 Note that only strong domination or a sibling relationship w il result in a connection.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 111

200002
G=(V;E) }m

V = fVy]Vo;Va; Va4, VsQ 59080%

E = fei; ;€3 € 5, €59 oz&ooz}m
n=jVvj=5 002002
m=jEj=6 : }m

002002
ooqzoz}m L mn+1)
000202
000022

; }m
000022
220002
022002
002202 \m
200202
020022
002022 y

{

=)
+
[y

Figure 7.2: Minimum Genotype Removal matrix A (right) to solve the Edge Biparti-
zation problem on the given graphG. Note how the correspondence between the elements
of G and the resulting genotype matrix have been emphasized by grey underlays: Edg®
corresponds to the last row ofA, since eg connectsvs and vs, a 2 has been written into
the 3rd and 5th column of that row. Analogously, e; connectsv; and v,. Each vertex of G

is represented by a column inA, emphasized in this gure by marking the second column
and showing its correspondence ta,. Note the interesting observation that we do not need
entries equal to 1 for the reduction.

time with respect to the input graph size. If there exists, as a solution to theEdge Biparti-
zation problem, asetl f 1;:::;mgwith jIj k such that removing the edgese ji 2 Ig
will bipartize G, then deletion of the corresponding rows (genotypes) inA will lead to a
matrix A that can be resolved to t the phylogenetic haplotype model. Conversely, if the
deletion of at most k rows in A yields a resolvable matrix then there are two cases to be
considered for each deleted row:

1. The row does not correspond to an edge. Since that row only contains at most two'
one in the pivot column and an additional one in some other row, deleting it will na
touch the construction of Gago, and can thus be considered obsolete. Note that for
each column, there are at leastm rows containing a 2 in that column and in the last
one. Thus, it is impossible to force two columns to be resolved equally by deletg
rows, sincek <m 2 in order for the original Edge Bipartization problem not to
be trivial.

2. The row corresponds to an edge. Then Gygo Will be isomorphic to G nfeg.
Thus, if deletion of a certain set of rows yields a matrixA°from A that ts the phylogenetic

model, then deletion of the corresponding edges will bipartiz&s. Note that the parameter k
is preserved by the reduction.

112 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Note that in the proof, we constructed the matrix A such that every genotype inA represents
at most one edge inGagqo. However, this must not be the case vice-vers& rendering
the existence of a parameter-preserving reduction fronMinimum Genotype Removal to
Edge Bipartization an open problem (in close analogy to the existence of such a reduction
for Minimum SNP Removal as shown in the previous section).

Instead of removing genotypes from the input matrix to Perfect Phylogeny Haplo-
type , one might rather be interested in removing a minimum number of sites. This is
considered in the next subsection.

7.3.2 Minimum Site Removal

As a motivation for this subsection, we employ|in principle|the same reasons as i n Sec-
tion 5.5. Again, only a few sites in the genotypes may be responsible for inhiting the
construction of a phylogeny for the haplotypes. This directly leads to the Minimum Site
Removal problem.

De nition 7.10 (Minimum Site Removal Problem)

Input: A ternary genotype matrix M of sizen m and an integerk.

Question: Is it possible to delete at mostk columns in M so that the resulting matrix can
be resolved into haplotypes that have evolved according toparfect phylogeny?

We have shown in the last subsection that the analogue problem, i.e., removing getypes
from a given Perfect Phylogeny Haplotype input matrix, is at least as hard as Edge
Bipartization . In the following Theorem 7.11, we will show that a similar result can
be obtained for Minimum Site Removal , which we show to be parameter-equivalent to
Vertex Bipartization

Theorem 7.11 Vertex Bipartization is parameter-equivalent to Minimum Site Re-
moval .
Proof In the introduction of the Perfect Phylogeny Haplotype -algorithm it was

shown that the problem of resolving the genotypes of an input matrix A into haplotypes
depends on the bipartization of a graphGa,g, that is constructed from the input data. This
graph was constructed so that every site in the genotype matrix was representedyba vertex
in Gago. Hence, deleting a vertex inGygo directly corresponds to the removal of a site
in A; thus, if Gago can be bipartized by removing at mostk vertices from it, removing the
corresponding sites inA will allow the genotypes in the resulting matrix to be resolved into
haplotypes by the Perfect Phylogeny Haplotype -algorithm.

We now give a reduction fromVertex Bipartization to Minimum Site Removal , anal-
ogously to the proof of Theorem 7.9.

The reduction is based on the following idea: Each of the rstn columns in the constructed
matrix A will represent a vertex in the given graph G = (V;E) (with jVj= n andjEj = m)
that we wish to bipartize by vertex deletion. By the rst n genotypes inA we will ensure
that the rst n columns have to be resolved unequally with respect to each other, because

19€.g., observe in Step 3 of the Perfect Phylogeny Haplotype algorithm that if a single genotype is
responsible for making the pivot column weakly dominate a se t of i columns, this genotype is responsible
for i edges in the corresponding graph Gago -

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 113

[@])\¥)
NO
Qo
oo
Qo
NN
NN
NN
NN
NN

NN
NN
NI
NN
NN

ocoNOONO
oNOONNO
NOoOoONNOO:" -
coMdNooOo
NNOOoON

22222

|
|

Figure 7.3: Minimum Site Removal matrix to solve the Verntex Bipartization problem
on a given graph. To see the correspondence between columns in the matrix and vertices in
the graph as well as edges in the graph and rows in the matrix, the following elationships
have been marked: Edgess corresponds to the last row of the matrix; since it connectsvs
and vs, a 2 has been written into the 3rd and 5th column of that row. In an analogue vay, e;
(mth row from the bottom) connects v; (rst column) and v, (second column). Each vertex
of the graph is represented by a column in the matrix, emphasized in this gure by making
the second column and showing its correspondence te,. Note the interesting property of
the reduction that it does not require any entries to be equal to 1.

they induce the row vectors (10) and (o1), i.e., are pairwise siblings. With m further
genotypes, we represent then edges ofG such that the deletion of a columncin A will also
destroy any represented edges that have vertex corresponding toas an endpoint.

Given a graph G = (V; E) that we wish to bipartize by deleting at most k vertices, a ternary
matrix A is constructed using an algorithm quite similar to the one given in the proof @
Theorem 7.9. LetV = fvy;:::;vpgand E = fey;:::;eng. Toan (m+ n) 2n matrix A of
zeroes, the following algorithm is applied in order to perform the reduction

Algorithm: Vertex Bipartization to Minimum Site Removal
Input: A graph G =(V;E)
Output: A parameter-equivalent instance A

of Minimum Site Removal

o1 for i 1:::n+ mdo

02 for | n+1:::2ndo
03 aj;j 2

04 for i 1:::ndo

05 aisj 2

o6 for each edges = fvj;vig do
07 8+ njj 2

08 Qi+ nk 2

In Figure 7.3, an example for the construction is given. The algorithm runs in
O(Vj (jVi+JEj)+ jVj+ jEj)

time and is thus polynomially bounded by the size of the input graph. It functions as
follows: Lineso1 through 03 write a 2 into every row of the rightmost n columns ofA. Lines
04 and o5 write 2's diagonally in the upper n n submatrix of A, causing each of the rstn

114 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

columns to be siblings to each other|they will therefore have to be resolved unequally by
the Perfect Phylogeny Haplotype -algorithm. Lines 06-08 encode the actual graphG
into A.

In the matrix A, the rst n columns are pairwise siblings and any of then rightmost
columns contains just 2s. Thus, any one of these columns (we will refer to these ewhns
as \ Il columns" from now on) weakly dominates all of the n leftmost columns. Now pick
a Il column c. With any of the rst n columns, ¢ only induces the pairs (2 0) and (2; 2)
as row vectors (hence the weak domination). With any of the last columnsc only induces
the pair (2;2), thus these columns may be resolved arbitrarily. Analogously to the prod
of Theorem 7.11, the graphGag constructed by the Perfect Phylogeny Haplotype -
algorithm in order to resolve the weakly dominated sites will therefore be somorphic to G
and each one of the rstn columns corresponds to a vertex inG.

The Perfect Phylogeny Haplotype -algorithm will then proceed as follows: Since all of
the rst n columns are weakly dominated byc, the graph Gaygo will contain a vertex for each

of these columns. Note that there will ben vertices for the last n columns in A, however,
these may be omitted since the resolvance between any two Il columns is arbitrar and a

Il column weakly dominates any column in the left half of A. Using the same arguments
as in the proof of Theorem 7.9, we can see thaG,y, is isomorphic to G and the resulting

haplotype model can only be resolved iiGago (alternatively G) is bipartite.

Assume that there exists a xed-parameter algorithm for the Minimum Site Removal pro-

blem. For a given instance G; k) of Vertex Bipartization we rst construct A in poly-
nomial time (see above). Furthermore, let there exists a solution to the gien Vertex
Bipartization instance, i.e., there exists a set f 1;:::;ng with jlj k such that re-

moving the verticesfv; j i 2 I g will bipartize G. Then the deletion of the corresponding
columnsfc ji 2 1gin A will lead to a matrix A°that ts the phylogenetic haplotype model.
Conversely, if the deletion of at mostk columns in A leads to a resolvable matrix then there
are two cases to be considered:

1. A column in the right half of A is deleted. Since this column does not contain any
additional information as it is identical to any other Il column this does not a ect the
resolvability of the Minimum Site Removal problem on A. Note that there are n
Il columns, and since k <n 2 we cannot delete all of these columns.

2. A column in the left half of A is deleted (let this be theith column where 1 i n).
This removes a 2 from theith row and any 2 in the lower half of A that indicated an
edge ofv;. Removing the 2 from theith row does not a ect the solvability of A, since
that row directly induces the zero-root and does not have to be resolved. Removing a 2
in a column that corresponded to any edgee = fv;;v; g for any j causes this row to be
identical to the jth row in A. The deletion of a column removes a vertex fromGgigo,
and therefore, if Gago can be bipartized by column deletion inA, G is bipartizable by
deleting the corresponding vertices.

Concluding, if deletion of a certain set of columns yields a matrixA° from A that ts the
phylogenetic model, then deletion of the corresponding vertices will bipartizeG. Note that
the parameter k is directly preserved by the reduction.

We have seen thatMinimum Genotype Removal is at least as hard to solve asEdge

Bipartization |deeper research will be needed to determine the relative hardness oiMi-

nimum Genotype Removal to Minimum Site Removal and their possible/impossible
xed-parameter tractability.

7.4. TESTING BRANCH&BOUND ON SNP DATA 115

Minimum Fragment Removal Minimum Fragment Removal
0
o 201 @ 10° 4
£ ®
- E i
c
o 107 5
g o 10
@ 10 1-
&
05 1.0 15 20 25 3.0 20 30 40 50 60
sequence length [kilobases] number of fragments
Figure 7.4: Performance of theVertex Bipartization algorithm on various Minimum

Fragment Removal instances. On the left, the average running time forVerntex Bipar-
tization on afragment con ict graph is shown relative to the source sequence's length(the
number of fragments is kept atﬁ). On the right, for a source sequence of length = 300, the
average running time of Vertex Bipartization on the fragment con ict graph is shown
relative to the total number of fragments.

7.4 Testing Branch&Bound on SNP Data

In this chapter, we have seen that the problemsMinimum Site Removal and Minimum

Fragment Removal are parameter-equivalent to Vertex Bipartization . Using the
reductions presented in this chapter, instances for both problems were transformed io
Vertex Bipartization -instances, on which the bipartization-software package presented

in Section 6.4 could be tested. In general, the software performed quite well,ding able to
solve instances for both problems that lead to graphs containing almost a hundrear (in
the case ofMinimum Fragment Removal) even hundreds of vertices

Methodology Due to the inavailability of \raw" read data from genotype-sequencing ex-
periments, the Minimum Fragment Removal instances were generated arti cially: Start-
ing with two copies s; and s, of a random sequence of length over the alphabetf A; C; G; T g,
sequences, was altered in 5% of its bases in order to simulate the presence of SNPs. Then,
n fragments of length 50 were read randomly from both sequences, introducing readrers
at a rate of 0.5%. Two experiments were made:

Varying * between 100 and 3000 witm = 5.
Varying n between 20 and 60 with™ = 300.

Each measurement was performed on 10 di erent random graphs for each set of pareeters.

In order to test the performance of the Vertex Bipartization algorithm for instances
of Minimum Site Removal , SNP-haplotype data from 50 samples of African Americans
and 42 samples of unrelated Japanese and Chinese origin (both available at [WBAB]) were
rst converted into genotype data and then transformed into a graph using an alorithm
that basically follows the procedure of the Perfect Phylogeny Haplotype -algorithm

116 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

introduced in the last section. \Holes" in the data from [Whit03], i.e., SNPs for which the
state is speci ed as \unknown", were simply discarded during the graph-construction.

The machine on which the results of this section were obtained is the same as imé exper-
iments from Section 6.4.

In some preliminary tests, all reduction rules except for Rule 6 (the rule invohing vertex

separators of order two) could often be applied to the graph. Since Rule 6 has by fahe

longest running time, it was switched o in the experiments. Performing measurenents

for the average running time with reduction rules turned o was not possible: Although

sometimes, the same phenomenon as in the experiments of Section 6.4 occurred (i.det
program was faster with reduction rules switched o0), some instances turned out © be

unsolvable in reasonable time with the reduction rules turned o . 2°

Results Figure 7.4 shows the results from theMinimum Fragment Removal experi-
ments, Figure 7.5 shows the results from theMinimum Site Removal experiments. The
average reduction rule usage was measured as follows:

Rule | Minimum Fragment Removal Minimum Site Removal

1 36.4% 15.9%
2 30.5% 66.7%
3 3.5% 0.2%
4 4.9% 0.3%
5 2.0% 2.1%
6 (0) (0)

7 10.72% 9.3%
8 10.5% 4.7%
9 1.5% 0.7%

Note that this usage does not re ect the relative gain in running time. Although Reduction
Rules 3 and 4 are not used very often, they should, as was discussed Subsection 6.3.2, fiev
a majority of the gain in running time.

Discussion For Minimum Fragment Removal , problem instances based on sequences
of a few thousand base pairs in length can be solved in acceptable time on averagdiithe
relative number of fragments (compared to the sequence's total length) is not todigh (e.g.,
around 5 as in the experiments shown left in Figure 7.4): While the averageunning time
increases roughly linearly with a longer sequence, it grows exponentially when the tian &

is increased.

It should be noted that the term \on average" must be used with care here: As the peakn
Figure 7.4 already indicates, the measured times had a very high variance, with soe larger
instance being solvable in under a minute, others in many hours for the same paramets

of sequence and fragment length. However, note that in the average case, even instances
with a few hundred fragments (=vertices in the corresponding con ict graph) can be sohed

e ciently. The reason why|compared to random graphs|the reduction rules are quite

e ective for Minimum Fragment Removal -con ict graphs, lies in the structure of these
graphs: Note that each fragment covers only a rather small portion of the surce sequence.

20 g., one instance of Minimum Fragment Removal that could be solved in about an hour with reduction
rules could not be solved within a day when the reduction rule s were switched o .

7.4. TESTING BRANCH&BOUND ON SNP DATA 117

size of
sample name| population # vertices | # edges | optimal solution | running time [s]
[vertices]
10a Japanese 57 117 3 11.3
1lla Japanese 51 212 5 48.7
12b Japanese 48 91 1 0.8
13a Japanese 78 210 6 2 498.8
l4a Japanese 72 107 4 7.1
15a Japanese 45 55 1 0.07
16a Japanese 14 10 0 0.03
17a Japanese 81 322 Not solvable in < 10 hours
18a Japanese 73 296 Not solvable in < 10 hours
19a Japanese 101 172 3 | 6.2
20a Japanese 241 640 Not solvable in < 10 hours
2l1a Japanese 33 102 9 2.1
22a Japanese 76 391 9 476.5
10a Afr.-American 45 143 5 6.2
1lla Afr.-American 45 191 9 359.3
12b Afr.-American 19 14 1 0.02
13a Afr.-American 57 235 10 58.3
l4a Afr.-American 63 397 Not solvable in < 10 hours
15a Afr.-American 47 139 6 224.2
16a Afr.-American 12 11 0 0.01
Figure 7.5: Performance of theVertex Bipartization algorithm on various Minimum

Site Removal instances. The Minimum Site Removal instances were generated from
data freely available in [Whit03]. If the bipartization on the test machine took longer than
10 hours, it was canceled.

Fragments that cover di erent parts of the source sequence are never connected by an edge in
the con ict graph|this seems to signi cantly increase the likeliness of separators. U nless|

by chance|many fragments cover the same area of the source sequence, the corresponding
Minimum Fragment Removal problems should therefore be e ciently solvable in practice
using the Vertex Bipartization -algorithm from this work.

Due to the rather small sample size, it is hard to make a general statement ahd the solvabil-

ity of Vertex Bipartization instances derived fromMinimum Site Removal problems.
Nevertheless many of the analyzed instances were solvable in under one hour, even some in
which the graph contained as much as 70 vertices. Referring to the results from Saoh 6.4,
this is a tremendous improvement. E.g., Sample 13a of the African-American popul#on led

to a graph with 57 vertices and an average vertex degree of more than 4|from theresults

of Section 6.4, we would have expected all but a bipartization in under a minute, especily
with the optimal solution containing as much as 10 vertices. Looking at thecorresponding
usage of reduction rules, it seems that exactly those larger graphs were bipartizad) to which
Reduction Rules 3 and 4 could be applied. However, precisely characterizing the instances
of Minimum Site Removal whichl|although they lead to rather large graphsjcan be

e ciently solved remains an open problem for future research. Overall, the resultsindicate
that the developed Vertex Bipartization algorithms are e cient enough to solve even
some larger instances oMinimum Site Removal and Minimum Fragment Removal

118 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Chapter 8

Conclusion

In this chapter, we give a brief recapitulation of this work, recalling the mog important
results. This summary is followed by some suggestions for related futureesearch.

8.1 Summary of Results and Future Extensions

In Chapters 2 and 3, we provided a basic introduction, the motivation, and necessar ter-
minology for this work|ranging from the prospects of SNPs in pharmacogenetics and phy-
logenetic analysis (Chapter 2) to a crash course in computational complexity, lte analysis
of algorithms, and xed-parameter tractability (Chapter 3). Brie y recalling the results of
the chapters following this bio-informatic introduction, we have shown that. ..

...the problem of Submatrix Occurrence is solvable in polynomial time (Chap-
ter 4).

...we can prove that the problem of Row Deletion (B) is NP-complete for subma-
trices B which have special -decompositions (Chapter 4).

...the problem of Row Deletion (B) is xed-parameter tractable and has a constant
approximation factor for any forbidden submatrix B (Chapter 4).

... data correction in order to be able to construct a perfect phylogeny can be fanu-
lated as aRow Deletion (B) or Column Deletion (B) problem with B being the
\extended -matrix"|or E M, for short (Chapter 5).

... data correction in order to be able to construct a perfect phylogeny isNP-complete
and xed-parameter tractable (Chapter 5).

...the search tree of a trivial algorithm for eliminating all E Ms in a binary matrix
by row deletion has sizeO(3%) instead of the intuitively expected O(4%) (Chapter 5).

...the problem of Vertex Bipartization is at least as hard asEdge Bipartiza-
tion , for there exists a parameter-preserving reduction from the latter to the former
(Chapter 6).

...data reduction rules can be designed to e ciently solve Graph Bipartization -
problems on graphs related to SNP-analysis (Chapters 6 and 7).

119

120 CHAPTER 8. CONCLUSION

...the reassembly of genotype-fragments into the underlying haplotypes is closere-
lated to Graph Bipartization (Chapter 7).

...data correction during the inference of haplotypes from genotypes is at least as
hard as Edge Bipartization (Chapter 7).

... data correction on the SNP sites during the inference of haplotypes from genotypes
is parameter-equivalent to Vertex Bipartization (Chapter 7).

During the preparation of this work, some interesting questions arose for Wwich time and
space did not allow a further investigation. However, they might serve as a sirting point
for future research:

We have shown forbidden submatrices to be a generalization of thBlinimum Species
Removal and Minimum Character Removal problem. Since any forbidden sub-
structure problem on bipartite graphs can be stated as a forbidden submatrix problem
on the respective graphs adjacency matrix: What other problems can be related to
the removal of forbidden submatrices? Are there problems that can be related to the
removal of “-ary matrices?

Can problems related tok-Perfect Phylogeny be connected to forbidden subma-
trix problems?

Is Conjecture 4.19 true? What are examples for matrices for which we do not yet kne
whether this conjecture is true and how can they be characterized in general?

Can the computational complexity of other submatrix-removal strategies (suchas the
modi cation of individual entries or Row and Column Deletion) be determined
using the framework developed in this work?

The problem of nding a minimum \feedback-vertex set" (a set that contains at least
one vertex from every cycle in the graph) is known to be xed-parameter tractable
[DoFe99]|can it be connected to Graph Bipartization ? Furthermore, we expect
the Minimum Feedback Vertex Set problem to have a lot of biological problems
closely related to it (e.g., nding key reactions in metabolic networks)|it theref ore
deserve some further research of its own.

The developed reduction rules are only e cient for the presented problems relating
to SNPs. The importance of Graph Bipartization in many areas of research (as
was mentioned in Chapter 6) could be a motivation to develop an e cient all-purpose
software package to solv&raph Bipartization (especiallyVertex Bipartization)
problems.

As we have seen, bringing together biology and (theoretical) computer science is a fruit-
ful undertaking for both areas, with biological problems giving impulses for he systematic
analysis of previously unstudied computational problems (such as th&kow Deletion pro-
blem in this work), and computer science providing tools and insights about chances and
limits in various areas of biological research. This is the core idea behind theeld of bioin-
formatics, from which we can hope to see more of this mutual nourishment inlie near future
as more and more people join in on connecting the life- and the computer sciences.

8.2. ACKNOWLEDGMENTS 121

8.2 Acknowledgments

My advisors Rolf Niedermeier, Jochen Alber, Jens Gramm, and Jiong Guo introducedne
to SNPs, spent many hours with me discussing my work, provided a lot of helpful dvice,
time and again proof-read my drafts, always had some interesting matedl at hand, and
created a most friendly, memorable, and stimulating working atmosphere. | have bne ted
from their e orts far beyond this work. Additionally, |1 wish to thank Eva A nderl for her
support, encouragement, countless waking and sleeping hours spent on reading my drafts
and for giving me the relieving insight that even a studied linguist can sometimesdespair
of the English relative clause and the commata it causes.

122 CHAPTER 8. CONCLUSION

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

51
5.2
53

6.1
6.2

6.3
6.4
6.5
6.6

Chemical structure of DNA and its abbreviated notation 6
Mapping SNPs by comparison of two individuals' DNA sequence 7
Development of linkage disequilibria in SNP sites 10
SNP pro ling in pharmacogenetics 13
A function f (x) and its bounds in O-notation. 19
A graph G and an optimal vertex cover forG. 21
The search tree for nding a vertex cover of sizek in a given graph 26
General scheme for the -decomposition of amatrixB 33
Finding all sets of rows that induce a forbidden submatrix. 36
Reduction from r-Hitting Set to Row Deletion (B) (Lemma 4.16) 42
Reduction from r%Hitting Set to Row Deletion (B) (Theorem 4.13) . . . 43
Reduction from r%Hitting Set to Row Deletion (B) (Theorem 4.14) . . . 45
Reduction from r%Hitting Set to Row Deletion (B) (Theorem 4.11) . . . 48
Sorted decomposition of a binary matrix (Lemma 4.17) 50
The merge operation for the proof of Theorem4.12 51
An example of a perfect phylogeny for a set of species 58
Parameterized reduction of 2Hitting Set to Minimum Species Removal . 63
An instance of2-Hitting Set and the correspondingMinimum Character

Removal problem. 68
A graph G and its optimal bipartization by edge and vertex deletion. 70
Construction of a Vertex Bipartization instance from an Edge Biparti-

zation instance. e 73
lllustration of the recoloring heuristic for Edge Bipartization 77
lllustration of the heuristic for opt-Vertex Bipartization 79
Reduction Rules3and 4 81
Reduction Rules5and 6 84

124

6.7 Reduction Rule 7 e e

6.8 ReductionRules8and9 e

6.9 UML-diagram for the implementation of the branch&bound algorithm
6.10 Running time for Graph Bipartization on a graph with 20 vertices

6.11 Search tree size foGraph Bipartization on a graph with 20 vertices

6.12 Running time for Graph Bipartization relative to the number of vertices .

6.13 Running time for Graph Bipartization relative to the number of de-bipar-
tizing elements (varying vertex degree)

6.14 Running time for Graph Bipartization relative to the number of de-bipar-
tizing elements (varying number of vertices)

7.1 Minimum Fragment Removal onasetoffragments

7.2 Minimum Genotype Removal matrix to solve the Edge Bipartization
problemon agivengraph

7.3 Minimum Site Removal matrix to solve the Vertex Bipartization pro-
blemonagivengraph

7.4 Performance of theVertex Bipartization algorithm on various Minimum
Fragment Removal instances

7.5 Performance of theVertex Bipartization algorithm on various Minimum
Site Removal instances

LIST OF FIGURES

Bibliography

[Aaro03]

[Abec01]

[ADF95]

[AgFe93]

[ALMSS92]

[Avis94]

[BBNEO3]

[BFW92]

[BJS02]

[BLMO3]

[Bodl8g]

[BodI97]

S. Aaronson. The Complexity Zoa http://www.cs.berkeley.edu/ aaronson/
zoo.html, 2003 ! 23

G. R. Abecasis. Extent and distribution of linkage disequilibrium in three
genomic regions.American Journal of Humane Genetics 68:191-197, 2001
S

K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogs.Annals of Pure and Applied Logic 73:235-276, 1995 ! 28

R. Agarwala and D. Ferrandez-Baca. A polynomial-time algorithm for the
perfect phylogeny problem when the number of character states is xedSIAM
Journal on Computing, 23(6):1216-1224, 1993 ! 59

S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof veri cation
and the hardness of approximation problemsJournal of the ACM, 45:501-555,
1998 | 71

J. C. Avise. Molecular Markers, Natural History and Evolution, Chapman &
Hall, 1994 | 9

R. Brum eld, P. Beerli, D. Nickerson, and S. Edwards. The utility of single
nucleotide polymorphisms in inferences of population history. Submitted for
publication, 2003 ! 9

H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against
perfect phylogeny. In Proceedings of the 19th ICALP, Springer-Verlag LNCS
623, 273-283, 1992 ! 58, 59

J. M. Berg, J. L. Tymoczko, and L. Stryer. Biochemistry. W. H. Freeman,
2002 ! 5

C. H. Bennett, M. Li, and B. Ma. Chain Letters & Evolutionary Hist ories.
Scienti ¢ American 6:64-69, 2003 ! 57

H. L. Bodlaender. Dynamic programming algorithms on graphs withbounded
treewidth. In Proceedings of the 15th ICALP, Springer-Verlag LNCS 317, 105-
119,1988 ! 59

H. L. Bodlaender. Treewidth: algorithmic techniques and results.Mathemati-
cal Foundations of Computer Science '97 19-36, Springer, 1997 ! 59

125

126 BIBLIOGRAPHY

[BremO01] J. G. Breman. The ears of the hippopotamus: manifestations, deternmants,
and estimates of the malaria burden.American Journal of Tropical Medical
Hygiene 64:1-11, 2001 ! 11

[Bune74] P. Buneman. A characterization of rigid circuit graphs. Discrete Mathematics
9:205-212, 1974 ! 59

[CaJu01] L. Cai and D. Juedes. Subexponential parameterized algorithms collapshe
W-hierarchy. In Proceedings of the 28th ICALP, Springer-Verlag LNCS 2076,
273-284,2001 ! 28

[Carg99] M. Cargill et al. Characterization of single nucleotide polymorphisms in coding
regions of human genesNature Genetics 22:231-238, 1999 | 7,8

[Chak01] A. Chakravarti. ...to a future of genetic medicine. Nature, 409:822-823, 2001
1,7

[CRS94] J. D. Cho, S. Raje, and M. Sarrafzadeh. Approximation algorithm on nulti-
way maxcut partitioning. In Proceedings of ESA '94 Springer-Verlag LNCS
855:148-158, 1994 ! 69

[CKJO01] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and furt her
improvements. Journal of Algorithms, 41:280-301, 2001 ! 26, 67

[CNR89] H. Cho, K. Nakajima, and C. S. Rim. Graph bipartization and via minimiza-
tion. SIAM Journal on Computing, 2(1), 38-47, 1989 ! 70

[CLRSO01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to
Algorithms (Second Edition). MIT Press, 2001 ! 21, 78, 85, 92

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis
Cambridge University Press, 1998 ! 55

[DeVa94] C. L. DeVane. Pharmacogenetics and drug metabolism of newer antidepresdan
agents. Journal of Clinical Psychiatry, 55:38-47, 1994 | 12

[DoFe99] R. G. Downey and M. R. Fellows.Parameterized Complexity. Monographs in
Computer Science, Springer-Verlag, 1999 ! 27, 28, 33, 120

[DRSHLO1] M. J. Daly, J. D. Rioux, S. F. Schaner, T. J. Hudson, and E. S. Lander.
High-resolution haplotype structure in the human genome.Nature Genetics
29(2):229-32,2001 ! 9

[Drst92] A. Dress and M. Steel. Convex tree realizations of partition. Applied Mathe-
matics Letters 5:3-6, 1992 | 59

[Dunn00] A. M. Dunning et al. The extent of human linkage disequilibrium in four
populations with distinct demographic histories. American Journal of Humane
Genetics 67:1544-1554, 2000 ! 9

1Some major aws in this work have been pointed out in R.G. Down ey, M.R. Fellows, R. Niedermeier,
and P. Rossmanith (eds.). Parameterized Complexity . Dagstuhl-Report No. 316, 2001. A revised version of
this paper is to appear under the title \On the existence of su bexponential-time parameterized algorithms”
in Journal of Computer and System Sciences .

BIBLIOGRAPHY 127

[EHKO3]

[EIM75]

[Esta78]

[Fels03]

[FeNi01]

[Fern01]

[Flan02]

[FOFu62]

[GaJo79]

[Gard98]

[Gavr74]

[GCS00]

[GGLO2]

[GHNRO3]

[GKP94]

[GMS00]

[GrKu90]

[Gusf91]

E. Eskin, E. Halperin, and R. M. Karp. E cient reconstruction of haplot ype
structure via perfect phylogeny. To appear in Journal of Bioinformatics and
Computational Biology (JBCB), 2003 ! 2, 104, 105, 106, 107, 108, 109, 110

G. Estabrook, C. Johnson, and F. McMorris. An idealized concept of the tue
cladistic character. Mathematical Bioscience 23:263-272, 1975 | 61

G. F. Estabrook. Some concepts for the estimation of evolutionar relation-
ships in systematic botany. Systematic Botany, 3(2):146-158, 1978 ! 57

J. Felsensteininferring Phylogenetics, Sinauer Associates Incorporated, 2003
I 55

H. Fernau and R. Niedermeier. An e cient exact algorithm for constraint
bipartite vertex cover. Journal of Algorithms 38(2):374-410, 2001 ! 33

D. Ferrandez-Baca. The perfect phylogeny problem. InSteiner Trees in In-
dustry, Kluwer Academic Press, 2001 ! 56, 57, 59

D. Flanagan. Java in a Nutshell. A Desktop Quick Reference O'Reilly Pub-
lishers, 2002 ! 89

L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks Princeton University
Press, 1962 ! 85

M. Garey and D. Johnson.Computers and Intractability: A Guide to the
Theory of NP-completeness.Freeman, San Francisco, 1979 ! 23, 24

M. J. Gardner et al. Chromosome 2 sequence of the human malaria parasite
plasmodium falciparum. Science 282:1126-1132, 1998 ! 11

F. Gavril. The intersection graphs of subtrees in trees are exactlythe chordal
graphs. Journal of Combinatorial Theory Series B, 16:47-56, 1974 | 59

I. C. Gray, D. A. Campbell, and N. K. Spurr. Single nucleotide polymomphisms
as tools in human geneticsHuman Molecular Genetics 9(16):2403-2408, 2000
7

A. J. F. Griths, W. M. Gelbart, and R. C. Lewontin. Modern Genetic Analy-
sis: Integrating Genes and GenomesW. H. Freeman, 2002 ! 5

J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. New vorst-case
upper bounds for Max2Sat with application to MaxCut . Discrete Applied
Mathematics, 130(2):139-155, 2003. ! 71

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics
Addison-Wesley, 1994 | 64

A. J. F. Griths, J. H. Miller, and D. T. Suzuki. An Introduction to Genetic
Analysis, W. H. Freeman, 2000 ! 5

D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms,
Birkhauser Verlag, 1990 ! 64

D. Guseld. E cient algorithms for inferring evolutionary trees. Networks,
21:19-28, 1991 ! 58, 60

128

[Gusf02]

[GVY96]

[HaCl97]

[Hadl75]

[HaEs03]

[Heilo3]

[HGSCO1]

[Hold02]

[Huds90]

[Karp72]

[Kawa94]

[Kawa97]

[KFHW98]

[Knut97]

[Knut03]

BIBLIOGRAPHY

D. Gus eld. Haplotyping as perfect phylogeny: Conceptual framework and e -
cient solutions [Extended Abstract]. Proceedings of the 6th ACM International
Conference on Computational Molecular Biology (RECOMB 20@), 166-175,
2002 ! 100, 103, 104

N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max- o w min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25:235-251, 1996 ! 71

D. L. Hartl and A. G. Clark. Principles of Population Genetics Sinnauer,
1997 ! 10

F. O. Hadlock, Finding a maximum cut of a planar graph in polynomial time.
SIAM Journal on Computing 4(3), 221-225, 1975 ! 70

E. Halperin and E. Eskin. Large scale recovery of haplotypesdm genotype
data using imperfect phylogeny. Technical Report, The Hebrew University of
Jerusalem, School of Engineering and Computer Science, 2003! 104

R. Heilig et al. The DNA sequence and comparative analysis of human chro-
mosome 14 Nature, 421:601-607, 2003 ! 1

The International Human Genome Sequencing Consortium (approx. 100 au-
thors). Initial sequencing and analysis of the human genomeNature, 409:860-
921 ! 1

A. L. Holden. The SNP Consortium: Summary of a private consortium e ort
to develop an applied map of the human genomeBioTechniques 32:22-26,
2002 ! 8,11

R. Hudson. Gene genealogies and the coalescent proce®xford Survey of
Evolutionary Biology, 7:1-44, 1990 ! 104

R. M. Karp. Reducibility among combinatorial problems. R. E. Miller and
J. W. Thatcher (eds.): Complexity of Computer Computations 85-103, 1972
I 70

S. Kannan and T. Warnow. Inferring evolutionary history from DNA se-
guences.SIAM Journal on Computing, 23:713-737, 1994 | 59

S. Kannan and T. Warnow. A fast algorithm for the computation and enumer-
ation of perfect phylogenies.SIAM Journal on Computing, 26(6):1749-1763,
1997 ! 59

I. J. Kitching, P. L. Forey, C. J. Humphries and D. M. Williams. Cladistics:
The Theory and Practice of Parsimony Analysis Oxford University Press,
1998 | 55,56

D. E. Knuth. The Art of Computer Programming, Volumes I-Ill Boxed Set:
Fundamental Algorithms, Seminumerical Algorithms, Sorting and Searching
(Third Edition). Addison-Wesley, 1997 ! 21

D. E. Knuth. The Art of Computer Programming, Pre-Fascicle 2A: A draft of
Section 7.2.1.1: Generating alln-Tuples, Zeroth printing (revision 6), available
via http://www-cs-faculty.stanford.edu/ knuth/taocp.html, 2003 ! 21

BIBLIOGRAPHY 129

[KhRa02]

[Krug99]

[KRW95]

[Kull9g]

[LBILS01]

[LeYa80]

[Ligg97]

[LPCO8]

[Mare97]

[Mart00]

[Mas099]

[MateO1]

[Meac83]

[MeEs85]

[MeNag9]

[Morr77]

S. Khot and V. Raman. Parameterized complexity of nding subgraphs with
hereditary properties. Theoretical Computer Science289(2):997-1008, 2002!
71

L. Kruglyak. Prospects for whole-genome linkage disequilibrium mappingof
common disease genedature Genetics 22:139-144, 1999 | 9

B. Klinz, R. Rudolf, and G. J. Woeginger. Permuting matrices to avoid for-
bidden submatrices.Discrete Applied Mathematics 60:223-248, 1993 32

O. Kullmann. New methods for 3-Sat decision and worst-case analysisThe-
oretical Computer Science223:1-72, 1999 ! 64

G. Lancia, V. Bafna, S. Istrail, R. Lippert and R. Schwartz. SNPs prob-
lems, complexity, and algorithms. In Proceedings of ESA 2001Springer-Verlag
LNCS 2161, 182-193, 2001 ! 2,101

J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Science20:219-
230,1980 ! 70

S. B. Liggett. Polymorphisms of the beta 2-adrenergic receptor and dsma.
American Journal of Respiratory Critical Care Medicine, 156:156-162, 1997
I 13

J. Lazarou, B. H. Pomeranz, and P. N. Corey. Incidence of adverse drug
reactions in hospitalized patients. Journal of the American Medical Society.
279:1200-1205, 1998 ! 12

D. Marez et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a
European population: characterization of 48 mutations and 53 alleles, their
frequencies and evolution.Pharmacogenetics 7:193-202, 1997 ! 7

E. R. Martin et al. Analysis of association at single nucleotide polymorphisms
in the ApoE region. Genomics 63:7-12, 2000 ! 12

E. Masood. Glaxo Wellcome is already using map datdylature, 398:546, 1999
I 12

E. Mateu et al. Worldwide genetic analysis of the CFTR region. American
Journal of Humane Genetics 68:103-117, 2001 ! 11

C. A. Meacham. Theoretical and computational considerations of the com-
patibility of qualitative taxonomic characters. Nato ASI Series Vol. G1 on
Numerical Taxonomy, Springer, 1983 ! 61

C. A. Meacham and G. F. Estabrook. Compatibility methods in sysematics.
Annual Review of Ecology and Systematicsl6:431-446, 1985 ! 57

K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geo-
metric Computing, Cambridge University Press, 1999 | 89, 92

F. McMorris. On the compatibility of binary qualitative taxo nomic characters.
Bulletin of Mathematical Biology, 39:133-138, 1977 ! 61

130

[Mu02]

[NCBIO3]

[Nied02]

[Niel0o]

[NiR00O]

[NiR0O3,]

[NiR0O3]

[NRO99]

[OMGO3]

[PaH098]

[Papa94]

[PaYa91]

[PBHO1]

[Page99]

[POTu95]

[PrsI03]

BIBLIOGRAPHY

J. Mu et al. Chromosome-wide SNPs reveal an ancient origin for plasmodium
falciparum.? Nature, 418:323-326, 2002 ! 7,9, 10, 11

National Center for Biotechnology Information (NCBI) , information available
via http://www.ncbi.nIm.nih.gov/, 2003 1

R. Niedermeier. Invitation to Fixed-Parameter Algorithms . Habilitationss-
chrift, Universitat Tubingen, 2002 I 29

R. Nielsen. Estimation of population parameters and recombinatio rates using
single nucleotide polymorphisms.Genetics 154:931-942, 2000 ! 9

R. Niedermeier and P. Rossmanith. A general method to speed up xed-
parameter-tractable algorithms. Information Processing Letters, 73:125-129,
2000 ! 27,33

R. Niedermeier and P. Rossmanith. An e cient xed-parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms, to appear 2003 ! 33, 63

R. Niedermeier and P. Rossmanith. On e cient xed-parameter algorithms
for weighted vertex cover.Journal of Algorithms, 47:63-77, 2003 26, 67, 68

M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships anong
certiodactyls based on insertions of short and long interpersed elements. Hyp-
popotamuses are the closest extant relatives of whale®roceedings of the Nati-
nal Academy of Sciences (USA) 96:10261-10266, 1999 ! 57

The Object Management Group UML Ressource Page.
http://www.omg.org/uml/, 2003 I 90

R. D. M. Page and E. C. Holmes.Molecular Evolution: A Phylogenetic Ap-
proach, Blackwell Science, 1998 | 56

C. H. Papadimitriou. Computational Complexity. Addsion-Wesley, 1994. !
16, 17, 71

C. H. Papadimitriou and M. Yannakakis. Optimization, approxim ation and
complexity classes.Journal of Computer and System Sciencgs43:425-440,
1991 ! 71

N. Patil, A. J. Berno, D. A. Hinds et al. Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromosome 21Science
294:1719-1723, 2001 ! 103

M. Page-JonesFundamentals of Object-Oriented Design in UML, Addison-
Wesley, 1999 ! 90

S. Poljak and Z. Tusza. Maximum cuts and large bipartite subgraphsDIMACS
Series in Discrete Mathematics and Theoretical Computer Sence, 20:181-244,
1995 ' 71

E. Prieto and C. Sloper. Either/or: Using vertex cover structure in dedgning
FPT-algorithms - the case of k-internal spanning tree. InProceedings of WADS
2003 2003 ! 71

2A correction of some details appears in Nature 419:487, 2002.

BIBLIOGRAPHY 131

[PSS97]

[PSS02]

[PSS02]

[RBILO2]

[RBWLO5]

[Reic01]

[RLHA98]

[RoRe52]

[Rose00]

[SCHHP82]

[SeSt03]

[Skie98]

[SMVS97]

[SNPO1]

S. Parkkila, W. S. Sly, R. C. Schatzmanret al. The hemochromatosis founder
mutation in HLA-H disrupts 2-microglobulin interaction and cell surface ex-
pression.Journal of Biological Chemistry, 22:14025-14028, 1997 ! 7

I. Pe'er, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. In
Proceedings of 11th CPM Springer-Verlag LNCS 1848, 143-153, 2000! 58,
60

I. Pe'er, R. Shamir, and R. Sharan. On the generality of phylogenies from
incomplete directed characters. InProceedings of 8th SWAT 2002 Springer-
Verlag LNCS 2368, 358-367, 2002 ! 58

R. Rizzi, V. Bafna, S. Istrail and G. Lancia. Practical algorithms and xed-
parameter tractability for the single individual SNP haplotyping problem. In
Proceedings of WABI 2002 Springer-Verlag LNCS 2452, 29-43, 2002 ! 99

J. C. Roach, C. Boysen, K. Wang, and L. Hood. Pairwise end sequencinga
uni ed approach to genomic mapping and sequencingGenomics 26(2):345-
353,1995 ! 100

D. E. Reich et al. Linkage disequilibrium in the human genome. Nature,
411:199-204, 2001 ! 9, 10, 11

S. M. Rich, M. C. Licht, R.R. Hudson, and F. J. Ayala. Malari a's Eve: evi-
dence of a recent populational bottleneck throughout the world's populations
of plasmodium falciparum. Proceedings of the National Academy of Sciences
(USA), 95:4425-4430, 1998 ! 11

F. W. Robertson and E. Reeve. Studies in quantitative inheritance. 1. he
e ects of selection on wing and thorax length in Drosophila melanogaster.
Journal of Genetics 50:414-448, 1952 ! 56

A. D. Roses. Pharmacogenetics and the practice of medicingature, 405:857-
865, 2000 ! 9, 12,13

F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen. Nicleotide
sequence of bacteriophage lambda DNAJournal of Molecular Biology 162:729-
773,1982 ! 100

C. Semple and M. SteePhylogenetics Oxford Lecture Series in Mathematics
and Its Applications, Oxford University Press, 2003 ! 55, 56

S. S. SkienaThe Algorithm Design Manual. Springer-Verlag, 1998 ! 16,
17, 78, 89

H. Schreder, A. E. May, I. Vrto, and O. Sykora: Approximation algorithms
for the vertex bipartization problem. In Proceedings of the 24th SOFSEM
Springer-Verlag LNCS 1338, 547-554, 1997 | 76, 77, 93

The International SNP Map Working Group (approx. 40 authors). A map of
human genome sequence variation containing 1.42 million single nucleotide
polymorphisms. Nature, 409:928-933 ! 2,7,8

132

[SSDO1]

[Stee9?2]

[Ston01]

[SuMi03]

[Tish96]

[Tish0O]

[Titc76]

[VoVo95]
[Wate95]

[Watt77]

[WeHu02]

[WeMy97]

[Whit03]

[WHOO03]

[Yann78]

[Yann81]

BIBLIOGRAPHY

M. Stephens, N. Smith, and P. Donnelly. A new statistical method for hap-
lotype reconstruction from population data. American Journal of Humane
Genetics 68:978-989, 2001 ! 104

M. Steel. The complexity of reconstructing trees from qualitative charaatrs
and subtrees.Journal of Classi cation, 9:91-116, 1992 ! 57

M. Stoneking. From the evolutionary past... .Nature, 409:821-822, 2001 !
1,2

The Sun Microsystems$M Java Technology Sourcehttp://java.sun.com/, 2003
I 89,93

D. A. Tishko et al. Global patterns of linkage disequilibrium at the CD4 locus
and modern human origins.Science 271:1380-1387, 1996 ! 9, 11

D. A. Tishko et al. Short tandem-repeat polymorphism/Alu haplotype vari-
ation at the PLAT locus: Implications for modern human origins. American
Journal of Human Genetics 67:901-925, 2000 ! 9, 11

E. C. Titchmarsh. Theory of Functions, Oxford University Press, 1976! 64
D. Voet and J. Voet. Biochemistry. John Wiley & Sons, 1995 | 5, 6, 100

M. S. Waterman. Introduction to Computational Biology. Chapman & Hall,
1995 ! 100

G. A. Watterson. Is the most frequent allele the oldest?. Theoretical Population
Biology, 11:141-160, 1977 ! 10

M. P. Weiner and T. J. Hudson. Introduction to SNPs: Discovery of markers
for disease.BioTechniques 32:4-13, 2002 ! 1

J. Weber and E. Myers. Human whole genome shotgun sequencinenome
Research 7:401-409, 1997 ! 100

The Whitehead Institute - Center for Genome Research. The Struc-
ture of Haplotype Blocks in the Human Genome. http://www-
genome.wi.mit.edu/mpg/hapmap/hapstruc.html#data, 2003 I 115,
116, 117

The World Health Organization. Fact Sheet 94: Malaria available via
http://www.who.int/inf-fs/en/fact094.html, 2003 11

M. Yannakakis. Node-and edge-deletiomNP-complete problems. InProceedings
of the 10th annual ACM Symposium on Theory of Computing253-264, 1978
I 70

M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297-309, 1981 ! 69, 70, 72

