
Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

Combinatorial Network Abstraction

by Trees and Distances

Stefan Eckhardt1, Sven Kosub1, Moritz G. Maaß1,⋆, Hanjo Täubig1,⋆⋆, and
Sebastian Wernicke2,⋆ ⋆ ⋆

1 Fakultät für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching, Germany
{eckhardt, kosub, maass, taeubig}@in.tum.de

2 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

wernicke@minet.uni-jena.de.

Abstract. This work draws attention to combinatorial network abstrac-
tion problems which are specified by a class P of pattern graphs and
a real-valued similarity measure ̺ based on certain graph properties.
For fixed P and ̺, the optimization task on any graph G is to find a
subgraph G′ which belongs to P and minimizes ̺(G, G′). We consider
this problem for the natural case of trees and distance-based similar-
ity measures. In particular, we systematically study spanning trees of
graphs that minimize distances, approximate distances, and approximate
closeness-centrality with respect to some standard vector and matrix
norms. The complexity analysis shows that all considered variants of the
problem are NP-complete, except for the case of distance-minimization
with respect to the L∞ norm. We further show that unless P = NP, there
exist no polynomial-time constant-factor approximation algorithms for
the distance-approximation problems if a subset of edges can be forced
into the spanning tree.

1 Introduction

Motivation. Network analysis aims at algorithmically exposing certain mean-
ingful structures and characteristics of a complex network that can be considered
essential for its functionality (see, e.g., [3] for a recent survey). A (simple) sub-
network containing only the essential parts of a given network is what we refer
to as a network abstraction.

In this work, we formalize the combinatorial network abstraction problem
by specifying a class P of admissible pattern graphs and a real-valued similarity
measure ̺ that rates the degree of correct approximation of a given graph G by a
subgraph G′ ⊆ G based on certain graph properties. For a fixed pattern class P
⋆ Supported by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr)

⋆⋆ Supported by DFG, grant Ma-870/6-1 (DFG-SPP 1126 Algorithmik großer und kom-
plexer Netzwerke).

⋆ ⋆ ⋆ Supported by Deutsche Telekom Stiftung and Studienstiftung des deutschen Volkes.

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

and a fixed measure ̺, the optimization task is to find for any input graph G a
subgraph G′ which belongs to P such that ̺(G,G′) is minimal.

Here, we restrict ourselves to trees as the class of pattern graphs (although
some results seem to easily carry over to related structures such as spanning
subgraphs with a restricted number of edges) because they are the sparsest
and simplest subgraphs that may connect all vertices of a network. Moreover,
for several applications the use of spanning trees as an approximation of the
network has some promising advantages:

1. Understanding network dynamics. A recent study [15] of communication ker-
nels (which handle the majority of network traffic) shows that the organi-
zation of many complex networks is heavily influenced by their scale-free
spanning trees.

2. Guiding graph-layout for large networks. We can use elegant tree-layout al-
gorithms for drawing a tree that closely reflects the main characteristics of
a given network.

3. Compressing networks. Even with most complex networks being sparse them-
selves, abstraction by trees reduces network sizes significantly.

In search of suitable graph properties for which a high amount of similarity
between a network and its abstraction is desirable, we concentrate in this paper
on distances as an inherent graph property. To quantify this degree of similar-
ity, we use standard vector and matrix norms ‖ · ‖r (see Sect. 2 for a review
and definitions) on the distance matrix DG of an input graph G and the dis-
tance matrices of its spanning trees. To this end, we consider the following three
optimization problems:

1. Find a spanning tree that minimizes distances. This corresponds to a simi-
larity measure ̺r(G,T) = ‖DT ‖r. As an example, for the L1 norm, the tree
realizing the minimum is known as the minimum average distance tree (or,
MAD-tree for short) [14, 8]. For the L∞ matrix norm, the tree realizing the
minimum is known as the minimum diameter spanning tree [6, 12].

2. Find a spanning tree that approximates distances. This corresponds to a
similarity measure ̺r(G,T) = ‖DT − DG‖r. As an example, for the L∞

matrix norm, we seek a tree that, for all vertex pairs, does not exceed a
certain amount of additive increase in distance. Such trees are known as
additive tree-spanners [17]. With the L1 norm, we are again looking for a
MAD-tree.

3. Find a spanning tree that approximates centralities. In this paper, we con-
sider the popular notion of closeness centrality [2, 23] which, for any graph
G = (V,E) and vertex v ∈ V , is defined as cG(v) = (

∑

t∈V dG(v, t))−1. The
optimization problem is then based on the similarity measure ̺r(G,T) =
‖cG − cT ‖r for some vector norm ‖ · ‖r.

Note that—except for the L1 matrix norm—distance-minimizing spanning trees
and optimal distance-approximating spanning trees typically cannot be used to

2

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

A graph G. with ‖DT ‖L,∞ = 2ℓ + 4

A spanning tree for G

and ‖DT − DG‖L,∞ = 2.

A spanning tree for G

with ‖DT ‖L,∞ = 2ℓ + 2

and ‖DT − DG‖L,∞ = 2ℓ + 1.

ℓℓ

Fig. 1. Distance-minimization and distance-approximation do not provide good ap-
proximate solutions for each other with respect to the norm L∞.

provide good approximate solutions for each other. An example for this (with
respect to L∞) is given in Fig. 1.

Results. We study the impact of the norm on the computational complexity
of the above-mentioned network abstraction problems. For computing distance-
minimizing spanning trees, two results have already been known, namely that
there exists a polynomial-time algorithm for computing a minimum diameter
spanning tree [6, 12] and that it is NP-complete to decide on input (G, γ) whether
there is a spanning tree T of G such that ‖DT ‖L,1 ≤ γ [14]. For distance-
approximating spanning trees, even for L1 and L∞, no such results have so far
been established to the best of our knowledge.1

In Sect. 3.2, we prove that deciding whether there exists a spanning tree T
such that ‖DT ‖r ≤ γ for any given instance (G, γ) is NP-complete for all matrix
norms within our framework where complexity has been unknown so far. We also
consider fixed-edge versions (as, e.g., in [5]) where problem instances additionally
specify a set of edges E0 that must be contained in the spanning tree. If we allow
arbitrary edge sets for E0, then even Minimum Diameter Spanning Tree

becomes NP-complete.
In Sect. 3.3, we prove that deciding whether there is a spanning tree T of G

such that ‖DT − DG‖ ≤ γ for any given instance (G, γ) is NP-complete for
all matrix norms within our framework, i.e., essentially for all standard norms
(with exception of the spectral norm, a case which is left open). This is some-
what surprising, since at least in the case of L∞ one might have hoped for a
polynomial-time algorithm based on the polynomial-time algorithms for com-
puting minimum diameter spanning trees. We also prove that the fixed-edge
versions of finding optimal distance-approximating spanning trees cannot be ap-
proximated in polynomial-time within constant factor unless P = NP.

Finally, in Sect. 3.4, we prove that with respect to closeness centrality, de-
ciding for a given instance (G, γ) whether there is a spanning tree T such that
‖cG − cT ‖r ≤ γ is NP-complete for the L1 vector norm.

Related work. Besides the already mentioned minimum diameter spanning
trees [6, 12] and MAD-trees [14, 8], several notions of distance-approximability
by trees have been considered in the literature. One variant is obtained by
considering the stretch dT (u, v)/dG(u, v) over all distinct vertices u, v ∈ V . If

1 Note that in contrast to some claims in the literature the results in [18] do not

provide a proof for the NP-completeness of deciding whether there is a spanning
tree T with ‖DT − DG‖L,∞ ≤ γ, neither does an easily conceivable adaption.

3

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

the stretch is at most γ, then the tree is called γ-multiplicative tree spanner
(see, e.g., [22]—recently, also combinations of additive and multiplicative tree-
spanners have been studied [10]). Finding a minimum maximum-stretch tree is
NP-hard even for unweighted planar graphs [11] and cannot be approximated
by a factor better than (1 +

√
5)/2 unless P = NP [19]. The problem of finding

a minimum average-stretch tree is also NP-hard [14].
Spanning subgraphs (not only trees) with certain bounds on distance in-

creases have been intensively studied since the pioneering work in [1, 21, 7]. The
most general formulation of a spanner problem is the following [18]: A spanning
subgraph H of G is an f(x)-spanner for G if and only if dH(u, v) ≤ f(dG(u, v))
for all u, v ∈ V (G). The computational problem then is to find an f(x)-spanner
with the minimum number of edges, a problem somewhat dual to ours since it
fixes a bound on the distance increase and tries to minimize the size of the sub-
graphs, whereas we fix the size of the subgraph and try to minimize the bounds.
In a series of papers, the hardness of the spanner problems has been exhibited
(see, e.g., [20, 5, 4, 16]). The version closest to our problem is to ask for a given
graph G and two given parameters m, t if there exists an additive t-spanner
for G with no more than m edges. This problem is NP-complete [18]. In the
case that m = n − 1 is fixed, it becomes the problem of finding the best possi-
ble distance-approximating spanning tree with respect to ‖ · ‖L,∞. However, the
corresponding NP-completeness proof for the general case relies heavily on the
number of edges in the instance and hence a translation to an NP-completeness
proof for the tree case is not obvious.

2 Notation

We consider simple, undirected, and unweighted graphs G with vertex set V and
edge set E. For two vertices v, w ∈ V , the distance between v and w (i.e., the
minimum number of edges in a path between u to v) in G is denoted by dG(v, w).
The corresponding distance matrix is denoted by DG. Clearly, DG is symmetric
with all entries being non-negative. Moreover, for any spanning tree T of a graph
G, we have DT [i, j] ≥ DG[i, j] for all vi, vj ∈ V . We use the following well-known
norms to evaluate a matrix A in Rn×n:

– The Lp norms ‖A‖L,p
def
=

(∑n
i=1

∑n
j=1 |ai,j |p

)1/p
for 1 ≤ p < ∞.2

– The L∞ norm ‖A‖L,∞
def
= maxi,j∈{1,...,n} |ai,j |.

– The maximum-column-sum norm ‖A‖1
def
= maxj∈{1,...,n}

∑n
i=1 |ai,j |.

– The maximum-row-sum norm ‖A‖∞ def
= maxi∈{1,...,n}

∑n
j=1 |ai,j |.

Trivially, for symmetric matrices we have ‖A‖1 = ‖A‖∞. Therefore, we only
consider the maximum-column-sum norm in our results to avoid redundancy.

2 In the last part of the paper, we use Lp norms for vectors as well: for any 1 ≤ p < ∞

and vector x ∈ Rn, define ‖x‖p
def
= (
Pn

i=1
|xi|

p)1/p.

4

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

9b
k 11 k 1b

K

L

X

R

C

r r

c 1 c 7

1

x

l1 l9

a

k 91 k

7

K

L

X

R

C

r r1

x

l1 l9

a

k 91 k 9b
k 11 k 1b

c 1 c

Fig. 2. Graph representation of an X3C instance and a corresponding solution tree.

3 Hardness Results

All our theorems establish hardness results that rely on similar constructions
(which, however, depend on parameters that must be tuned in a non-trivial
manner). We gather these essential constructions in the next section, followed
by our results.

Note that, due to lack of space, we defer the proofs for our results to [9].

3.1 Gadgets

Graph representation of X3C instances. Given a family C = {C1, . . . , Cs} of
3-element subsets of a set L = {l1, . . . , l3m}, the NP-complete problem Exact-

3-Cover (X3C) asks whether there exists a subfamily S ⊆ C of pairwise disjoint
sets such that

⋃

A∈S = L. A subfamily S satisfying this property is called an
admissible solution to (C, L). Suppose we are given an X3C instance (C, L) and
let a, b be arbitrary natural numbers. Following a construction from [14], we
define the graph Ga,b(C, L) to consist of the vertex set

V
def
= C ∪ L ∪ {r1, . . . , ra}

︸ ︷︷ ︸

def
= R

∪ {x}
︸︷︷︸

def
= X

∪{k1,1, . . . , k1,b, . . . , k3m,1, . . . , k3m,b}
︸ ︷︷ ︸

def
= K

and the edge set

E
def
=

{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪

{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪

∪
{
{lµ, Cν} | lµ ∈ Cν

}
∪

{
{lµ, lν} | µ, ν ∈ {1, . . . , 3m}

}
∪

∪
{
{kµ,ν , lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}
.

This construction is illustrated in Fig. 2. Given an admissible solution S to an
X3C instance (C, L), we can identify a corresponding spanning subgraph TS

called solution tree in Ga,b(C, L) through the edge set

E(TS) =
{
{rµ, x} | µ ∈ {1, . . . , a}

}
∪

{
{Cµ, x} | µ ∈ {1, . . . , s}

}
∪

∪
{
{lµ, Cν} | lµ ∈ Cν and Cν ∈ S

}
∪

∪
{
{kµ,ν , lµ} | µ ∈ {1, . . . , 3m} and ν ∈ {1, . . . , b}

}
.

5

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

S = {s1, s2, s3, s4} C = {{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}

gadget for s1 gadget for s2 gadget for s3 gadget for s4

clause paths of length 2n(m + 2)

safety paths of

length 2n(m + 2)

elongation

path

literal

path

a ba′

Fig. 3. Construction of a 2HS gadget G(C,S, k). The dashed paths that are drawn
bold consist solely of edges that must be contained in a spanning tree for the graph.

Lemma 1. Let (C, L) be an X3C instance, a, b ∈ N. Let T be any spanning

tree of the graph Ga,b(C, L). There exists an admissible solution S ⊆ C such that

T = TS if and only if the following conditions are satisfied:

1. For all µ ∈ {1, . . . , s}, the tree T contains the edge {Cµ, x}.
2. For all µ ∈ {1, . . . , 3m}, there is a ν ∈ {1, . . . , s} such that T contains the

edge {lµ, Cν}.
3. For all µ ∈ {1, . . . , s}, vertex Cµ has either four neighbors in T or one. ⊓⊔

Graph representation of 2HS instances. Given a family C = {C1, . . . , Cm}
of 2-element subsets of a set S = {s1, . . . , sn} and a natural number k, the
NP-complete 2-Hitting Set (2HS) problem asks whether there exists a sub-
set S ′ ⊆ S such that ‖S ′‖ ≤ k and S ′ ∩ Cµ 6= ∅ for all µ ∈ {1, . . . ,m}.3 A
subset S ′ ⊆ S having this property is called an admissible solution to a 2HS

instance (C,S, k). Suppose we are given an instance (C,S, k) of 2HS where
‖C‖ = m and ‖S‖ = n. We define the graph G(C,S, k) to consist of

– two vertices a, a′, and b,
– for each sµ ∈ S, consisting of vertices vµ, v′

µ, uµ
1 , . . . , uµ

m+1 and vµ
1 , . . . , vµ

m,
– for each clause Cµ = {sν , sκ} ∈ C, clause paths of length 2n(m+2) connecting

vν
µ with vκ

µ and safety paths of length 2n(m + 2) connecting vν
µ with a′.

For each sµ ∈ S the literal gadget Gµ consists of two vertices vµ and v′
µ called con-

nection vertices. Both vµ and v′
µ are connected via a path (vµ, uµ

1 , . . . , uµ
m+1v

′
µ)

of length m + 2 called elongation path and a path (vµ, vµ
1 , . . . , vµ

mv′
µ) of length

m + 1 called the literal path. The construction is illustrated in Fig. 3.

Lemma 2. Let (C,S, k) be an instance of 2HS. Then we have dG(C,S,k)(a, b) =
2 + n(m + 2). Moreover, there exists an admissible solution S ′ ⊆ S to (C,S, k)
if and only if there exists a spanning tree T of G(C,S, k) containing all edges in

the clause paths such that dT (a, b) ≤ dG(C,S,k)(a, b) + k. ⊓⊔
3

2HS is better known as Vertex Cover. For the sake of readability (i.e., to avoid
an overuse of the terms “vertices” and “edges”), we use the 2HS formulation.

6

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

3.2 Trees that Minimize Distances

Here we consider the problem of computing a spanning tree for a graph which
minimizes distances among the vertices under certain matrix norms ‖ · ‖r.

Problem: Distance-Minimizing Spanning Tree (DMST)
Input: A graph G and an algebraic number γ.
Question: Does G contain a spanning tree T with ‖DT ‖r ≤ γ?

Using the graph representation Ga,b(C, L) for any X3C instance (C, L), the
following theorem can be shown.

Theorem 3. DMST with respect to the norms ‖·‖1 and ‖·‖L,p is NP-complete

for all p ∈ N+, even when restricted to planar graphs. ⊓⊔

It is known that a minimum-diameter spanning tree in a graph—i.e., DMST

with respect to ‖ · ‖L,∞)—can be found in polynomial time [6, 12]. However, the
next theorem shows that the fixed-edge version of this problem is intractable. This
version additionally contains an edge set E0 ⊆ E(G) and we seek a spanning
tree T such that ‖DT ‖r ≤ γ and E0 ⊆ E(T). Using the graph representation
G(C,S, k) for any given instance (C,S, k) of 2HS gives us the following theorem.

Theorem 4. The fixed-edge version of DMST with respect to the norm ‖ ·‖L,∞

is NP-complete. ⊓⊔

3.3 Trees that Approximate Distances

We now turn to the problem of finding spanning trees that approximate the
distances in a graph under a given matrix norm ‖ · ‖r. We also examine the
fixed-edge version of this problem, which is specified in the same way as for
DMST.

Problem: Distance-Approximating Spanning Tree (DAST)
Input: A graph G and an algebraic number γ
Question: Does G contain a spanning tree T with ‖DT − DG‖r ≤ γ?

NP-completeness results. Using the graph representation Ga,b(C, L) for any X3C

instance (C, L), the following theorem can be shown.

Theorem 5. DAST with respect to the norms ‖ · ‖1 and ‖ · ‖L,p is NP-complete

for all p ∈ N+. ⊓⊔

For proving the NP-completeness for the L∞ matrix norm, it is helpful to
first establish the result for the fixed-edge version (by reduction from 2HS).

Lemma 6. The fixed-edge version of DAST with respect to the norm ‖ · ‖L,∞

is NP-complete. ⊓⊔

7

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

To get rid of the fixed edges, we replace them by cycles such that deleting
a fixed edge will cause the distance between two cycle vertices to increase by
more than the allowed threshold γ, which then gives us the hardness result for
the norm ‖ · ‖L,∞.4

Lemma 7. Let G = (V,E) be any graph and let {v, w} be an arbitrary non-

bridge edge in G. For k > 3, let G′ be the graph resulting from adding a path

(v, u1, . . . , uk, w) to G where uµ /∈ V for all µ ∈ {1, . . . , k}. There exists a span-

ning tree T of G which includes the edge {v, w} and satisfies ‖DT −DG‖L,∞ ≤ k
if and only if there exists a spanning tree T ′ of G′ with ‖DT ′ −DG′‖L,∞ ≤ k. ⊓⊔
Theorem 8. DAST with respect to the norm ‖ · ‖L,∞ is NP-complete. ⊓⊔
Inapproximability results. We now show that—independent of the norm—it is
hard to approximate the fixed-edge version of DAST in polynomial time within
a constant factor. Let G be a graph and E′ ⊆ E(G) be the set of fixed edges.
We say that an algorithm A is a polynomial-time constant-factor approximation

algorithm for the fixed-edge version of DAST with respect to ‖ · ‖r if, for some
constant δ > 0, it computes a spanning tree TA of G with E′ ⊆ E(T) in polyno-
mial time such that ‖DTA

−DG‖r ≤ δ · ‖DTopt
−DG‖r. Here, Topt is the optimal

tree, i.e., ‖DTopt
− DG‖r = minT ‖DT − DG‖r for all spanning trees T of G.

2HS is not polynomial-time approximable within a constant factor better
than 7/6 unless P = NP [13]. To make use of this in our context, note that
the main idea behind the graph representation G(C,S, k) for any given instance
(C,S, k) of 2HS is that choosing an element from S into the solution corresponds
to opening a literal path in G(C,S, k). This opening is “penalized” by the elon-
gation path, increasing the distance between the vertices a and b. The key idea
now is to increase this penalty in a super-linear way by recursively replacing
elongation paths with graph representations of the given 2HS instance.

More formally, suppose we are given an instance (C,S, k) of 2HS where
‖C‖ = m and ‖S‖ = n. For j ∈ N+ we define the graph G(C,S, k, j) recursively
as follows: For j = 1, the graph G(C,S, k, j) is just the graph G(C,S, k). For

j > 1, define lj−1
def
= dG(C,S,k,j−1)(a, b). Then G(C,S, k, j) consists of

– three vertices a, a′, and b,
– literal paths Pµ for each sµ ∈ S, consisting of vertices vµ

1 , . . . , vµ
lj−1−1,

– elongation gadgets Gµ for each sµ ∈ S, consisting of a copy of G(C,S, k, j−1),
with the vertices a, a′, and b in G(C,S, k, j − 1) relabeled as aµ, a′

µ and bµ,
– for each Cµ = {sν , sκ} ∈ C, clause paths and safety paths of length 2nlj−1

connecting vν
µ with vκ

µ and vν
µ with a′, respectively.

For each clause Cµ ∈ C the vertices aµ and bµ are connected via a literal path
(aµ, vµ

1 , . . . , vµ
lj−1−1, bµ). Furthermore, the edges {a, a′}, {a′, a1}, {bm, b}, and the

4 A similar technique with two cycles was used in [5, Lemma 3] to guarantee that any
minimum t-spanner (i.e., a spanning subgraph with smallest number of edges such
that dG(u, v) ≤ t · dT (u, v) for all u, v ∈ V) contains a certain edge. However, this
construction does not work in the context of additive distance growth and trees.

8

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

edges {bi, ai+1} for all 1 ≤ i ≤ m−1 are in G(C,S, k, j). Note that the graph size
is polynomial in the size of the instance (C,S, k) and j. The following analogue
to Lemma 2 can be established for our new graph representation of 2HS:

Lemma 9. Let (C,S, k) be a given instance of 2HS and j ∈ N+. Then, we

have that dG(C,S,k,j)(a, b) = 3nj+1−1
n−1 + nj(m − 1) − 1. Moreover, there exists

an admissible solution S ′ ⊆ S to (C,S, k) if and only if there exists a spanning

tree T of G(C,S, k, j) containing all edges in the clause paths of all instances

G(C,S, k, j′), for j′ < j, of which G(C,S, k, j) is composed, including the clause

paths in G(C,S, k, j) such that dT (a, b) ≤ dG(C,S,k,j)(a, b) + kj. ⊓⊔
Lemma 10. Unless P = NP, there is no polynomial-time algorithm A that,

given a 2HS instance (C,S, k) and parameter j ∈ N+, computes a spanning

tree TA of G(C,S, k, j) such that dTA
(a, b) − dG(C,S,k,j)(a, b) ≤ δ · dTopt

(a, b) −
dG(C,S,k,j)(a, b) for any δ > 0. Here, Topt is a spanning tree of G(C,S, k, j)
such that dTopt

(a, b) − dG(C,S,k,j)(a, b) = minT dT (a, b) − dG(C,S,k,j)(a, b) where

the minimum is taken over all spanning trees that include all clause paths. ⊓⊔
Theorem 11. Unless P = NP, there is no polynomial-time constant-factor ap-

proximation algorithm for the fixed-edge version of DAST with respect to the

norms ‖ · ‖L,∞, ‖ · ‖L,p, and ‖ · ‖1. ⊓⊔

3.4 Trees that Approximate Centralities

Closeness centrality cG : V → R for a graph G = (V,E) is defined for all v ∈ V as

cG(v)
def
= (

∑

t∈V dG(v, t))−1 [2, 23]. Here we consider the problem of computing
a spanning tree such that its centrality function is as close as possible to the
centrality function of the original graph with respect to some vector norm ‖ · ‖r.

Problem: Closeness-Approximating Spanning Tree (CAST)
Input: A graph G and an algebraic number γ
Question: Does G contain a spanning tree T with ‖cG − cT ‖r ≤ γ?

By a reduction from our X3C gadget, we can show the following theorem.

Theorem 12. CAST with respect to the norm ‖·‖1 is NP-complete, even when

restricted to planar graphs. ⊓⊔

4 Conclusion

We have introduced the problem of combinatorial network abstraction and sys-
tematically studied it for the natural case of trees and distance-based similarity
measures. This provides the first computational complexity study in this area,
presented in a unifying framework.

As an interesting problem left open here, future research might consider the
presented problems with respect to the spectral norm—in the light that NP-
completeness appears with coarser norms and the value of the spectral norm is
always smaller than that of the norms considered here, there might even be a
chance for polynomial-time solvability.

9

Proc. 16th ISAAC-05, Vol. 3827 in LNCS, pp. 1100-1109, Springer, 2005

References

1. B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823,
1985.

2. M. A. Beauchamp. An improved index of centrality. Behavioral Science, 10:161–
163, 1965.

3. U. Brandes and T. Erlebach, editors. Network Analysis: Methodological Founda-

tions, volume 3418 of LNCS. Springer-Verlag, 2005.
4. U. Brandes and D. Handke. NP-completeness results for minimum planar spanners.

Discr. Math. & Theor. Comp. Sci., 3(1):1–10, 1998.
5. L. Cai. NP-completeness of minimum spanner problems. Discr. Appl. Math.,

48(2):187–194, 1994.
6. P. M. Camerini, G. Galbiati, and F. Maffioli. Complexity of spanning tree prob-

lems: Part I. Europ. J. Oper. Res., 5(5):346–352, 1980.
7. L. P. Chew. There are planar graphs almost as good as the complete graph. J.

Comp. Sys. Sci., 39(2):205–219, 1989.
8. E. Dahlhaus, P. Dankelmann, W. Goddard, and H. C. Swart. MAD trees and

distance-hereditary graphs. Discr. Appl. Math., 131(1):151–167, 2003.
9. S. Eckhardt, S. Kosub, M. G. Maaß, H. Täubig, and S. Wernicke. Combinato-

rial network abstraction by trees and distances. Technical Report TUM-I0502,
Technische Universität München, Institut für Informatik, 2005.

10. M. Elkin and D. Peleg. (1 + ǫ, β)-spanner constructions for general graphs. SIAM

J. Comp., 33(3):608–631, 2004.
11. S. P. Fekete and J. Kremer. Tree spanners in planar graphs. Discr. Appl. Math.,

108(1–2):85–103, 2001.
12. R. Hassin and A. Tamir. On the minimum diameter spanning tree problem. Inform.

Proc. Lett., 53(2):109–111, 1995.
13. J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
14. D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. The complexity of the

network design problem. Networks, 8:279–285, 1978.
15. D.-H. Kim, J. D. Noh, and H. Jeong. Scale-free trees: The skeletons of complex

networks. Phys. Rev. E, 70(046126), 2004.
16. G. Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–

450, 2001.
17. D. Kratsch, H.-O. Le, H. Müller, E. Prisner, and D. Wagner. Additive tree span-

ners. SIAM J. Discr. Math., 17(2):332–340, 2003.
18. A. L. Liestman and T. C. Shermer. Additive graph spanners. Networks, 23(4):343–

363, 1993.
19. D. Peleg and E. Reshef. Low complexity variants of the arrow distributed directory.

J. Comp. Sys. Sci., 63(3):474–485, 2001.
20. D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116,

1989.
21. D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J.

Comp., 18(4):740–747, 1989.
22. E. Prisner. Distance approximating spanning trees. In Proc. STACS’97, volume

1200 of LNCS, pages 499–510. Springer-Verlag, 1997.
23. G. Sabidussi. The centrality index of a graph. Psychometrica, 31:581–603, 1966.

10

