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The Parameterized Complexity of Some Minimum Label Problems
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Abstract

We study the parameterized complexity of several minimum label graph problems, in which we are
given an undirected graph whose edges are labeled, and a property Π, and we are asked to find a subset
of edges satisfying property Π that uses the minimum number of labels. These problems have a lot
of applications in networking. We show that all the problems under consideration are W[2]-hard when
parameterized by the number of used labels, and that they remain W[2]-hard even on graphs whose
pathwidth is bounded above by a small constant. On the positive side, we prove that most of these
problems are FPT when parameterized by the solution size, that is, the size of the sought edge set.
For example, we show that computing a maximum matching or an edge dominating set that uses the
minimum number of labels, is FPT when parameterized by the solution size. Proving that some of
these problems are FPT is nontrivial, and requires interesting and elegant algorithmic methods that we
develop in this paper.

1 Introduction

In this paper we consider several minimum label graph problems that are defined as follows:

Input: A graph G = (V,E) whose edges are associated with labels or colors specified by a
function C : E → C, where C denotes the set of labels (also referred to as colors in this paper),
a graph property Π, and an integer d.
Output: A set E′ ⊆ E such that the subgraph of G consisting of the set of edges in E′

satisfies Π, and the number of labels/colors used by the edges in E′ is at most d.

Minimum label problems have been extensively studied in the last few years. These problems are
motivated by applications from telecommunication networks, electrical networks, and multi-modal trans-
portation networks. For example, in communication networks, there are different types of communication
media, such as optic fiber, cable, microwave, and telephone line. A communication node may communicate
with different nodes by choosing different types of communication media. Given a set of communication
network nodes, the problem of finding a connected communication network using as few types of communi-
cation media (i.e., labels/colors) as possible is exactly the Minimum Label Spanning Tree problem, in
which the property Π is the property of being a spanning tree of G (see [5, 14] for more details). Among the
minimum label problems that have been extensively studied, we mention the Minimum Label Spanning

Tree problem [1, 2, 3, 5, 9, 11, 14, 15, 18, 19, 20], the Minimum Label Path problem [2, 4, 9, 17, 21]
(where Π is the property of being a path between two designated vertices), the Minimum Label Cut prob-
lem [10, 21] (where Π is the property of being a cut between two designated vertices), and the Minimum

Label Perfect Matching problem [12] (where Π is the property of being a perfect matching).
The previous work on minimum label problems mainly dealt with determining the classical complexity

of these problems and studying their approximabilty. Some of the previous work, however, dealt with
developing exact algorithms for these problems. For example, Broersma et al. [2] devised two exact algo-
rithms for the Minimum Label Path and Minimum Label Cut problems with running time
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O(n ·min{|C|d(s,t), 2|C|}) and O(n2 · |C|!), respectively, where C denotes the set of labels (colors), and d(s, t)
denotes the distance between the two designated vertices s and t.

In the current paper we study the parameterized complexity of several minimum label graph problems,
with respect to two natural parameters: the number of used labels d, and the size of the solution |E′|.
The problems under consideration are: Minimum Label Spanning Tree (MLST), Minimum Label

Hamiltonian Cycle (MLHC) (where Π is the property of being a Hamiltonian cycle), Minimum Label

Cut (MLC), Minimum Label Edge Domination Set (MLEDS) (where Π is the property of being an
edge dominating set, that is, every edges in E \ E′ shares at least one endpoint with some edge in E′),
Minimum Label Perfect Matching (MLPM), Minimum Label Maximum Matching (MLMM)
(where Π is the property of being a maximum matching of G), and Minimum Label Path (MLP).

From some of the NP-hardness reductions for the above problems, we can derive parameterized in-
tractability results with respect to the parameter d; for example, the NP-hardness reduction for Minimum

Label Spanning Tree shows that this problem is W[2]-hard [11]. In this paper, we strengthen these
intractability results by showing that, even on graphs whose pathwidth is at most a small constant, when
parameterized by the number of used labels d, these problems remain W[2]-hard. These results are in-
teresting, as very few natural parameterized problems are known to be (parameterized) intractable on
graphs with bounded pathwidth. When parameterized by the solution size |E′|, we show that, with the
only exceptions of Minimum Label Path and Minimum Label Cut, which are W[1]-hard, all other
problems are fixed-parameter tractable (on general graphs). Showing that some of these problems are FPT
is non-trivial, and requires elegant algorithmic methods that we develop in this paper.

All the hardness results will be presented in Section 2, while Section 3 contains all the fixed-parameter
tractability results.

For the background and terminologies on graphs, we refer the reader to West [16], and for that on
parameterized complexity, we refer the reader to Downey and Fellows’ book [7].

2 Parameterized Hardness Results

First, we show that even on graphs whose pathwidth is at most a small constant, all the considered minimum
label problems are W[2]-hard, when parameterized by the number of used labels d. These results are very
interesting since there are few problems that are known to be W-hard on graphs of bounded pathwidth.

Theorem 2.1 Parameterized by the number of used labels d:

• Minimum Label Edge Dominating Set and Minimum Label Maximum Matching are W[2]-
hard on trees of pathwidth at most 1;

• Minimum Label Spanning Tree and Minimum Label Path are W[2]-hard on graphs with path-
width at most 2;

• Minimum Label Cut and Minimum Label Perfect Matching are W[2]-hard on graphs with
pathwidth at most 3; and,

• Minimum Label Hamiltonian Cycle is W[2]-hard on graphs with pathwidth at most 5.

Proof. All the corresponding FPT-reductions are from the W[2]-hard Hitting Set (HS) problem,
defined as follows. Given a ground set S, a collection L of subsets of S, and a nonnegative integer k,
decide if there exists a subset S′ of S of cardinality at most k, such that every subset in L has a non-empty
intersection with S′. We only give one FPT-reduction showing that Minimum Label Spanning Tree

(MLST) is W[2]-hard. The reductions for the other problems are similar.
For a given instance of HS, we construct a graph G where, for each subset c in L, there is a star

consisting of a root vertex and |c| leaves. The edges in this star are labeled with the elements of c. Then,
we connect the leaves of this star by a path whose edges have the same label x, where x /∈ S. Finally,
we connect all root vertices by a path whose edges have the same label x. Clearly, the resulting graph
has pathwidth 2. Observe that every size-d solution of the HS-instance corresponds to a solution of the
resulting MLST-instance using d + 1 labels, and vice versa. This gives the W[2]-hardness of MLST.

Next, we consider Minimum Label Cut (MLC) and Minimum Label Path (MLP) with the size of
the set E′ as the parameter.
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Theorem 2.2 Parameterized by the solution size |E′|:

• Minimum Label Cut is W[1]-hard on graphs with pathwidth at most 4, and

• Minimum Label Path is W[1]-hard on graphs with pathwidth at most 2.

Proof. We give an FPT-reduction for MLC from the W[1]-hard Multicolored Clique problem [8].
Multicolored Clique has as input a graph G, together with a proper k-coloring of the vertices of G,
and the question is whether there is a k-clique in G consisting of exactly one vertex from each color class.
The parameter is the clique size k.

To construct an MLC-instance from a Multicolored Clique instance (G = (V,E), k), we partition
the edges in E into

(

k
2

)

subsets, each containing the edges between two color classes. For each subset of
edges, we create in the MLC-instance a path between two designated vertices s and t whose length is equal
to the size of this subset; each edge of the path is in a one-to-one correspondence with an edge in this subset.
Finally, we replace each edge of the path by two parallel length-2 paths, and these two length-2 paths are
labeled by the two endpoints of the corresponding edge, respectively. In the resulting MLC-instance we
ask for an s-t cut of size at most 2 ×

(

k
2

)

, using at most k labels.

Since there are exactly 2×
(

k
2

)

edge-disjoint paths between s and t, every solution of the MLC-instance

contains exactly 2 ×
(

k
2

)

edges whose labels correspond to k vertices from the Multicolored Clique

instance. Those vertices must induce exactly
(

k
2

)

many edges in G. The converse is also easy to check.
Thus, there is a correspondence between the solutions of both instances. Moreover, the resulting MLC-
instance is clearly a graph whose pathwidth is equal to 4.

The FPT-reduction for Minimum Label Path works analogously.

3 Fixed-Parameter Tractability Results
Parameterized by the solution size, Minimum Label Spanning Tree, Minimum Label Perfect

Matching, and Minimum Label Hamiltonian Cycle are all fixed-parameter tractable, since the in-
stance size is bounded by a function of the parameter. However, it requires much more effort to show
that Minimum Label Maximum Matching (MLMM) and Minimum Label Edge Dominating Set

(MLEDS) are fixed-parameter tractable with respect to the same parameter. We note that we are mainly
concerned with establishing the fixed-parameter tractability of MLMM and MLEDS. Consequently, the
running time of the parameterized algorithms developed in this paper is not very practical, and can defi-
nitely be improved much further.

3.1 Minimum Label Maximum Matching (MLMM)

Let (G, k) be an instance of MLMM, where k is the size of a maximum matching in G. We denote by
e(G) and n(G) the number of edges and vertices, respectively, in G. Let M be a maximal matching in G,
I = V (G) \ V (M), and note that I is an independent set in G. We denote by G[M ] the subgraph of G
induced by the endpoints of the edges in M .

The algorithm is a search-tree based algorithm: it starts by growing a set of partial solutions, i.e.,
matchings, into an optimal solution, i.e., a maximum matching that uses the minimum number of colors.
To do so, the algorithm branches on some vertices and edges in G to decide whether they belong to an
optimal solution or not. Since the branching will consider all possibilities, we will maintain the invariant
that at least one partial solution, among all partial solutions we keep, can be extended to an optimal
solution. The algorithm can be split into several stages, each trying to simplify the resulting instance
further by possibly performing more branchings. In order for the reader to get a feel of what these stages
are trying to achieve, and how together they contribute to the final solution, we give an intuitive description
of each stage first.

In Stage 1, we branch on the vertices and edges in G[M ] to determine which ones belong to an optimal
solution. At the end of this stage, the edges in G[M ] will be removed, as well as some of its vertices. We
will be left with a bipartite graph whose first partition S is a subset of vertices in G[M ], consisting of
the endpoints of the edges that belong to an optimal solution (under the corresponding branching), and
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whose second partition is a subset of vertices in I. We note that during this stage some edges in G[M ] will
be added to the partial solutions, and hence, their colors are decided to be used by the optimal solution.
Moreover, the parameter k is decremented by a value equal to the number of edges added to the partial
solution.

In Stage 2, we start with a bipartite graph B = (S, I), and we would like to compute a maximum
matching that matches S into I, and that uses the minimum number of colors, under the constraint that
some colors have already been determined (from Stage 1) to be used by an optimal solution. In this stage
we will simplify the instance further. We branch by enumerating all possible partitions of S into groups Si,
i = 1, . . . , ℓ, such that there is an optimal solution in which all vertices in Si are matched using edges of the
same color—we will call such a set of edges a monochromatic matching. For a fixed partitioning of S into
groups, we compute, for each group Si, the set Mi of monochromatic matchings that match Si into I. If
|Mi| is bounded above by a predefined function of k, then we can compute a matching in Mi that is part
of an optimal solution by trying (branching on) all monochromatic matchings in Mi, and subsequently
remove Si from S. If all monochromatic matchings in Mi use the same color, we branch on every vertex
in Mi whose degree in Mi is larger than a predefined function of k.

In Stage 3, we can assume that, for each remaining group Si, |Mi| is larger than a predefined function
of k, and for each Mi whose monochromatic matchings all use the same color, the degree of every vertex
in Mi is larger than a predefined function of k. We show in this case that an optimal solution can be
computed easily (without any branching): a matching M ′ that matches S into I exists, such that the set
of edges in M ′ incident on each group Si is a monochromatic matching in Mi.

Stage 1

Let Mopt be an optimal solution that we are trying to compute. For every edge e in G[M ] we branch as
follows.

• e in Mopt: in this case we include e, decrement k by 1, and remove e and its endpoints from the
graph. We also record that the color C(e) is used in the optimal solution.

• e is not in Mopt: in this case we simply remove e, that is, we set G := G − e.

For every remaining vertex v in G[M ] we branch as follows.

• v in Mopt: in this case we keep v in the graph.

• v is not in Mopt: in this case we remove v by setting G := G − v.

Let S be the set of remaining vertices in G[M ], and note that since all the edges in G[M ] have been
removed during the branching, S is an independent set. Moreover, assuming that our partial solution
(branching) is valid (i.e., leads to an optimal solution), every vertex in S must be an endpoint of an edge in
the optimal solution Mopt. Without loss of generality, and since the parameter k can only decrease during
the branching, we will denote the resulting parameter by k; this will simplify the notation in the remaining
discussion. Assuming that our branching is valid, we have the following observation.

Observation 1 The following are true:

(a) |S| = k, and hence,

(b) for every u ∈ I, deg(u) ≤ k.

Let B = (S, I) be the resulting bipartite graph from G after the branching. The remaining task amounts
to computing a matching with the minimum number of colors that matches S into I—and hence has size
k, under the constraint that some of the colors have been used.

Analysis of the number of partial solutions enumerated in Stage 1

Since |M | ≤ k, the number of vertices in G[M ] is at most 2k, and the number of edges in G[M ] is at most
(2k

2

)

= k(2k − 1).
The branching in Stage 1 can be implemented as follows. For each i = 0, . . . , k, we choose a matching

of size i from the edges in G[M ] to be included in Mopt. For each of the remaining at most (2k−2i) vertices
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in G[M ], we branch on it as indicated above, thus creating at most 22k−2i partial solutions. Therefore, the
number of partial solutions enumerated in Stage 1 is bounded above by:

k
∑

i=0

(

k(2k − 1)

i

)

22k−2i = 4k

k
∑

i=0

(

k(2k − 1)

i

)

1/4i (1)

≤ 4k

(

k(2k − 1)

k

) k
∑

i=0

1/4i (2)

≤ 4k · (e(2k − 1))k · O(1) (3)

≤ 4k · (2ek)k · O(1) = O((8ek)k).

Inequality (2) is justified by the fact that the coefficient
(

k(2k−1)
k

)

is the largest coefficient in the summation.
Inequality (3) uses the fact that

(

n
k

)

≤ (en/k)k, where e is the base of the natural logarithm (for instance,
see [6]). It follows that the number of partial solutions enumerated in Stage 1 is O((8ek)k).

Stage 2

Given the bipartite graph B = (S, I) and the parameter k, we try in this stage to simplify the instance
further by performing more branching. We say that a matching is monochromatic if all its edges have the
same color. If M ′ is a monochromatic matching, we denote by C(M ′) the color of the edges in M ′.

We would like to partition S into groups such that all the vertices in the same group are matched in
Mopt by a monochromatic matching of a distinct color. For this purpose we try all possible partitions of S.
For a fixed partition of S into ℓ groups S1, . . . , Sℓ, we work under the assumption that the vertices in each
group are matched by a monochromatic matching in Mopt of a distinct color (with respect to the colors
of the other groups). Clearly, there exists at least one partition of S for which this working hypothesis is
true, namely the one induced by the color classes in Mopt.

Let S1, . . . , Sℓ be a fixed partition of S into ℓ nonempty groups, where 1 ≤ ℓ ≤ k is an integer. It
is possible that a group Si uses the color of an edge that was added to a partial solution in Stage 1.
Therefore, for each (possibly empty) subset Cused of the set of colors of the edges added in Stage 1, we try
all one-to-one mappings from Cused to {S1, . . . , Sℓ}. Fix such a mapping. Then some groups in {S1, . . . , Sℓ}
have been assigned colors, and hence the colors of the monochromatic matchings sought for these groups
are fixed. Clearly, since we are trying all possible assignments of the used colors to the groups, there will
be an assignment that corresponds to that of Mopt, and we are safe.

Let Si, i ∈ {1, . . . , ℓ}, be a group. If Si has a preassigned color, let ci be this color and define Mi = {Mi |
Mi is a monochromatic matching that matches Si into I and C(Mi) = ci}. Otherwise, the color of Si is un-
determined yet, and in this case defineMi = {Mi | Mi is a monochromatic matching that matches Si into I}.

Let h(k) be a function of k to be determined later, and let Si, i ∈ {1, . . . , ℓ}, be a group. We perform
more branching to simplify the instance as follows.

If |Mi| ≤ h(k), we branch on every matching in Mi as the matching that matches Si in Mopt. For
each branch corresponding to a matching Mi in Mi, we add the edges in Mi to the potential solution,
decrement k by |Si|, remove the vertices in V (Mi) from the graph, and remove every edge whose color is
C(Mi) from the graph (such an edge can no longer be used). Since we are trying all possible matchings Mi

in Mi, we are safe.
If the total number of colors used by the matchings in Mi is at most h(k), we branch by trying all

possible colors appearing in Mi to determine the color used in Mopt to match Si (this color has to be one
of the colors in Mi). For each such color c, we remove all the edges in Mi whose colors are different from
c. Again, since we are branching on all possible colors in Mi, we are safe.

If all the edges of the matchings in Mi have the same color, and if there exists a vertex v in Si with
at most h(k) edges incident on it in the matchings in Mi, we branch on which edge in a matching in Mi

matches v in Mopt. For each branch corresponding to an edge ev, we add ev to the potential solution,
remove the endpoints of ev from the graph, and decrement k by 1. We can now assume the following.

Assumption 3.1 For each i ∈ {1, . . . , ℓ}:
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(i) |Mi| > h(k).

(ii) Either the number of colors appearing in Mi is more than h(k), or it is exactly 1.

(iii) If Mi has exactly one color appearing in it, then every vertex in Si has more than h(k) edges that
are incident on it in the matchings in Mi.

In the next stage we show how, given the above assumption, we can easily compute a solution to the
resulting instance.

Analysis of the number of partial solutions enumerated in Stage 2

Let cused be the number of colors used in Stage 1. The number of partitions of S into ℓ groups is at most
ℓ|S| ≤ ℓk. For each partition of S into ℓ groups, where ℓ ≥ cused, we map the colors used in a one-to-one
fashion to a subset of the ℓ groups. There are at most ℓ!/(ℓ − cused)! ≤ ℓ! such mappings. Therefore, the
total number of partitions of S in which some of the ℓ groups (exactly cused many groups among them)
have been assigned the used colors is at most

∑k
ℓ=1 ℓkℓ! ≤ kk+1k!.

Now for each Si, i ∈ {1, . . . , ℓ}, we compute at most h(k) + 1 monochromatic matchings Mi ∈ Mi. To
do so, we iterate over each color c, and compute at most h(k)+1 monochromatic matchings of color c. For
a fixed color c, we consider the subgraph of B consisting only of the edges incident on Si whose color is c.
Note that each matching in this subgraph that matches Si into I is a maximum matching. It was shown
in [13] how, after computing a maximum matching in a bipartite graph, every other maximum matching
can be computed in linear time in the number of vertices of the subgraph, per matching. Therefore,
computing at most h(k) + 1 monochromatic matchings of color c that match Si into I can be done in time
O(e(G)

√

n(G) + n(G)h(k)). As a matter of fact, since whenever we fix a color c for a group Si we only
look at the edges of color c incident on the vertices in Si, and since we totally compute at most h(k) + 1
matchings incident on the vertices in Si, computing at most h(k)+1 monochromatic matchings (regardless
of the color) incident on the vertices of Si can be done in time O(e(G)

√

n(G)+n(G)h(k)). Since there are
at most k groups, computing the sets Mi, i = 1, . . . , ℓ, can be done in time O(ke(G)

√

n(G) + kh(k)n(G)).
To make the graph B satisfy the statements in Assumption 3.1, we do the following. After computing

the set Mi for each group Si as indicated above, we check if |Mi| ≤ h(k). If it is, we branch on every
monochromatic matching in Mi. For each such matching Mi, we remove the endpoints of the edges in Mi,
and hence the group Si from the graph, and decrease the parameter by |Si|. Since we are branching on
every monochromatic matching in Mi, we are safe. Since there are at most h(k) matchings in Mi, and at
most k groups Si, the total number of enumerations is at most h(k)k.

Now we can assume that the cardinality of each set Mi is at least h(k) + 1.
If there is a set Mi such that the total number of colors appearing in it is at most h(k), then we branch

by trying every color in Mi as the color used to match Si in Mopt. For each such color c, we remove all
the edges incident on Si whose color is different from c, and we remove every edge whose color is c but is
not incident on a vertex in Si. The total number of enumerations is again at most h(k)k.

Finally, if we have a set Mi such that all the matchings in this set have the same color c, then for every
vertex v (if any) in Si whose degree in Mi is at most h(k), we branch on which edge in Mi is used to
match v in Mopt. For each edge in Mi incident on v, we remove the endpoints of the edge from the graph
and decrement k by 1. Since we are trying all possible edges incident on such a vertex v, we are safe. The
total number of enumerations in this case is at most h(k)k (there are at most k vertices in S).

We can now assume that B satisfies the statements in Assumption 3.1. The total number of enumera-
tions incurred to make B satisfy the statements in Assumption 3.1 is at most h(k)k ·h(k)k ·h(k)k = h(k)3k.

It follows that the number of partial solutions enumerated in Stage 2 is bounded above by the number
of partitions of S, multiplied by the number of enumerations to make B satisfy the statements in Assump-
tion 3.1. From the above discussion, it follows that the number of partial solutions enumerated in Stage 2
is O(kk+1k! + h(k)3k).

Stage 3

Given an instance B = (S, I) and a parameter k such that S is partitioned into S1, . . . , Sℓ, where each
set Mi associated with Si, for i = 1, . . . , ℓ, satisfies the statements of Assumption 3.1, we show how to
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compute a matching M ′ that matches S into I, and such that the set of edges in M ′ incident on Si is a
monochromatic matching whose edges are edges from the matchings in Mi.

Theorem 3.2 Let h(k) ≥ k2 + k. Assuming that each Mi, i = 1, . . . , ℓ, satisfies Assumption 3.1, then we
can compute a matching M ′ that matches S into I, such that the set of edges in M ′ incident on Si, for
i = 1, . . . , ℓ, is a monochromatic matching whose edges are edges from the matchings in Mi.

Proof. Starting with S1, we pick a monochromatic matching M1 ∈ M1 that matches S1 into I. Let
I1 = V (M1) ∩ I. Inductively, assume that we have determined a monochromatic matching Mj , where
1 ≤ j < ℓ, such that the edges in Mj are edges from the matchings in Mj , and such that Ij = Mj ∩ I is
disjoint from I1 ∪ . . . ∪ Ij−1. We show how to determine a monochromatic matching Mj+1 whose edges
are edges from the matchings in Mj+1, and such that Ij+1 = Mj+1 ∩ I is disjoint from I1 ∪ . . . ∪ Ij. We
distinguish two cases:

Case 1. Mj+1 contains more than h(k) colors. By Observation 1-(b), each vertex in I has degree at most
k. Since |I1 ∪ . . . ∪ Ij | ≤ |S| ≤ k, there are at most k2 edges incident on I1 ∪ . . . ∪ Ij. Since Mj+1 contains
more than h(k) monochromatic matchings of distinct colors, the number of monochromatic matchings in
Mj+1 whose edges are incident on I1 ∪ . . . ∪ Ij is at most k2. Therefore, the fact that h(k) > k2 guar-
antees the existence of a monochromatic matching Mj+1 ∈ Mj+1 whose endpoints in I are disjoint from
I1 ∪ . . . ∪ Ij . Consequently, Ij+1 is disjoint from I1 ∪ . . . ∪ Ij .

Case 2. Mj+1 contains a single color. By Assumption 3.1-(iii), every vertex in Sj+1 has more than h(k)
edges incident on it in Mj+1. As in Case 1 above, the number of edges incident on I1 ∪ . . .∪ Ij is at most
k2. Since h(k) ≥ k2 + k, for every vertex in Sj+1, there are at least k edges incident on it in Mj+1 such
that none of them is incident on a vertex in I1 ∪ . . . ∪ Ij. Moreover, all these edges (for all v ∈ Sj+1) have
the same color. By Hall’s theorem [16] (note that |Sj+1| ≤ k), there is a matching Mj+1 whose edges are
edges from the matchings in Mj+1, and such that Ij+1 is disjoint from I1 ∪ . . . ∪ Ij .

Analysis of the running time of Stage 3

This stage involves no enumerations. Moreover, it is easy to see that, in both Case 1 and Case 2,
computing the matching Mj takes O(|Mj | · |Sj |) time. Therefore, computing the matching M ′ takes O(k3)
time.

Putting all together

The correctness of the algorithm follows from the fact that it is enumerating all possible branchings. For
each possible branching, either we reject the instance, or we end up computing a maximum matching that
uses a certain number of colors. The maximum matching we output at the end is the maximum matching
with the minimum number of colors. The running time of the algorithm is bounded by the number of
partial solutions enumerated, multiplied by the running time spent along each enumeration (path in the
search tree). The number of partial solutions we enumerate is the product of those enumerated in Stage 1
(O((8ek)k)) and Stage 2 (O(kk+1k! + h(k)3k)), which is O((8e)k · k7k) after choosing h(k) = k2 + k. Along
each path in the search tree we end up processing the graph G, which takes linear time in its number of
vertices and edges, computing a maximum matching in G, which takes O(e(G)

√

n(G)), and computing the
sets Mi in Stage 2, which takes O(ke(G)

√

n(G) + k3n(G)). Therefore, the running time of the algorithm
is O((8e)k · k7k+3e(G)

√

n(G)).

Theorem 3.3 Minimum Label Maximum Matcing is FPT when parameterized by the size of the max-
imum matching in the graph.

3.2 Minimum Label Edge Dominating Set (MLEDS)

The ideas used by the algorithm are similar in flavor to those used for the MLMM problem. Therefore,
we will omit some details to avoid repetition. We start with the following easy observation.

Observation 2 Let M be a matching in G, and let Q be an edge dominating set of G. Then |Q| ≥ |M |/2.
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Let (G, k) be an instance of MLEDS. Let M be a maximal matching in G, I = V (G) \ V (M), and note
that I is an independent set in G. If |M | > 2k, then by Observation 2, G does not have an edge dominating
set of size at most k, and we can reject the instance (G, k). Therefore, we may assume henceforth that
|M | ≤ 2k.

Similar to what we did for the MLMM problem, we will branch on the edges and vertices in M to
determine which ones contribute to a solution Qopt, which is an edge dominating set of G of size at most
k that uses the minimum number of colors (if such a solution exists).

For an edge e ∈ G[M ], we branch on e as follows. If e is decided to be in Qopt, we set G = G − e,
decrement k by 1, mark all the edges incident on e in the graph as dominated, and label both endpoints of
e with the label “INused” to indicate that they are in Qopt, and are endpoints of some edge that is already
decided to be in Qopt. (We will use the label “IN” later to indicate that the vertex is decided to be in
Qopt but has no incident edge that was decided to be in Qopt yet.) We also indicate that the color of e has
been used by storing it in a set of colors Cused. On the other hand, if e is decided not be in Qopt, we set
G = G − e.

For a vertex v ∈ G[M ] whose status has not been determined yet by the above branching (i.e., v does
not have the label INused), we branch on v as follows. If v is decided to be an endpoint of an edge in Qopt,
we label v as IN , and mark every edge incident on v as dominated. If v is decided not be an endpoint of
an edge in Qopt, we label it as OUT .

Note that since I is an independent set in G, every edge in G must be dominated by an edge in Qopt

with at least one endpoint in G[M ]. In particular, this is true for every edge in G[M ]. Therefore, after
branching on the edges and vertices in G[M ], we need to check that, for every edge e ∈ G[M ] that was
decided not to be in Qopt and subsequently removed from G, at least one of its endpoints has label IN
or INused. If this is not the case, then the partial solution that we have enumerated is not valid, and we
reject it.

Noting that after the above branching all the edges of G[M ] were removed from G, we end up with
a bipartite graph B = (S, I), where S consists of the vertices in G[M ]. Every vertex in S has one of the
following labels: (1) INused indicating that the vertex is an endpoint of a known edge which was determined
to be in Qopt, (2) IN indicating that the vertex is the endpoint of some edge in Qopt but this edge has not
been determined yet, and (3) OUT indicating that the vertex is not an endpoint of an edge in Qopt. The
edges in B have one of two possible types: (1) dominated, those are the edges with at least one endpoint of
label INused or IN , and (2) not dominated, and those are the edges whose endpoint in S is of label OUT .

Since we are trying all possible branches for the edges and vertices in G[M ], we are safe. The number
of partial solutions enumerated by the branching can be upper bounded in a similar fashion to that in
Stage 1 of the algorithm for MLMM. The only difference here is that the number of edges in the maximal
matching M is at most 2k, and hence, the number of vertices in G[M ] is at most 4k, and consequently the
number of edges in G[M ] is at most 2k(4k − 1). Using a similar analysis to that in Stage 1 of MLMM, we
obtain that the number of partial solutions enumerated by the above branching is at most (128ek)k .

Now given the instance B = (S, I), and the parameter k (without loss of generality), we will branch
further to simplify the instance. First, observe that since the number of edges in Qopt is at most k,
the number of vertices in S that are labeled with INused or IN is at most 2k (otherwise, we reject the
enumeration).

Observation 3 For every vertex w in I, the number of edges incident on w whose endpoint in S is labeled
with INused or IN is at most 2k.

Note that, for every edge e = {u, v} where u ∈ S has label OUT , e needs to be dominated by an edge
incident on v; therefore, the vertex v must be an endpoint of some edge in Qopt. Since the number of edges
in Qopt is at most k, and B is bipartite, there can be at most k vertices in I that are neighbors of vertices
in S of label OUT ; let Iin be the set of such vertices. Since (by Observation 3) every vertex in I has at
most 2k edges incident on it whose endpoint in S is labeled INused or IN , we can branch on every such
edge incident on a vertex in Iin to determine if the edge is in Qopt or not. For each such edge, if the edge is
decided to be in Qopt, we include the edge in the solution, label both its endpoints INused, we remove the
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edge, decrement k by 1, and update Cused appropriately; if the edge is decided not be in Qopt, we simply
remove it. After this branching, we check that for every vertex in Iin at least one of the edges incident on
it was decided to be in Qopt; otherwise, we reject the branch. The number of partial solutions generated
by this branching is at most (2k)k.

After branching on the edges incident on the vertices in Iin and removing them, the vertices in Iin and
the vertices in S of label OUT can be removed. Every remaining vertex in S is either of label INused or
IN .

Since a vertex in S of label INused is an endpoint of an edge already in Qopt, every edge incident on
a vertex in INused is dominated. Therefore, if for every vertex of label IN in S we determine one of its
incident edges to be in Qopt, we obtain an edge dominating set of B. On the other hand, our branching
stipulates that from every vertex in S of label IN we must determine at least one edge incident on it to
be in Qopt. Therefore, our problem reduces to picking for every vertex of label IN in S exactly one edge
incident on it, so that the total number of colors used is minimized. To do so, we first remove the vertices
of label INused from S, since no edge incident on any of them needs to be considered. At this point S
should have at most k vertices; otherwise, we can reject. Then for every color c in Cused, and for every
vertex v of label IN in S, if there is an edge of color c incident on v, we include e in the solution, decrement
k, and remove the vertex from B. (Note that edges whose color is in Cused are gained for free.)

After this step, every vertex in S is of label IN , and there is no edge incident on any vertex in S whose
color appears in Cused. To compute a set of edges of minimum colors, such that for every vertex in S
exactly one edge in this set is incident on it, we try each partition of S into ℓ groups, ℓ ∈ {1, . . . , k}, such
that all vertices in the same group are incident on edges of the same color in Qopt (as we did in Stage 2
of the MLMM problem). For each such partition and each group in this partition, we find a color c such
that every vertex in this group is incident on an edge of color c. If such a choice is not possible for some
group, then we reject the partition.

At the end, we end up with an edge dominating set for G. We output the edge dominating set of G
of size at most k that uses the minimum number of colors, over all partial solutions generated from all
branches.

Since S has at most k vertices at this stage, the total number of partitions of S is at most kk+1.
It follows that the total number of partial solutions enumerated by the algorithm is O((128ek)k ·

(2k)k · kk+1) = O((256e)kk3k+1). For each such partial solution we need to process the graph G dur-
ing the branching, which takes time O(n(G) + e(G)). Therefore, the running time of the algorithm is
O((256e)kk3k+1(n(G) + e(G))).

Theorem 3.4 Minimum Label Edge Dominating Set is FPT when parameterized by the size of the
edge dominating set.

4 Concluding Remarks

In this paper, we considered some minimum label graph problems. We showed that, when parameterized by
the number of used labels, most of these problems are intractable, even on graphs of bounded pathwidth. On
the other hand, we showed that most of these problems become parameterized tractable when parameterized
by the solution size.

We note that, recently, there has been a lot of interest in studying structured graph problems, such
as problems on colored graphs, due to their applications in various fields such as networking and compu-
tational biology. (The convex recoloring problem is such an example in computational biology.) While
these problems are practically very important, they are often computationally hard due to the structural
requirement on the solution sought. Therefore, it is both natural and interesting to study whether these
problems remain intractable with respect to different parameters, such as the number of colors, the path-
width/treewidth of the graph, the solution size, or even with respect to more restrictive parameters, such
as the vertex cover or the max leaf number. This paper follows this line of research.

Finally, it is interesting to study the parameterized complexity of other minimum label graph problems
that have practical applications. A good candidate would be the Minimum Label Feedback Arc Set problem
on directed graphs.
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