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Abstract. We study the parameterized complexity of the problem to
reconstruct a binary (evolutionary) tree from a complete set of quartet
topologies in the case of a limited number of errors. More precisely, we
are given n taxa, exactly one topology for every subset of 4 taxa, and
a positive integer k (the parameter). Then, the Minimum Quartet In-
consistency (MQI) problem is the question of whether we can find an
evolutionary tree inducing a set of quartet topologies that differs from the
given set in only k quartet topologies. MQI is NP-complete. However,
we can compute the required tree in worst case time O(4* - n + n*)—
the problem is fixed parameter tractable. Our experimental results show
that in practice, also based on heuristic improvements proposed by us,
even a much smaller exponential growth can be achieved. We extend the
fixed parameter tractability result to weighted versions of the problem.
In particular, our algorithm can produce all solutions that resolve at
most k errors.

1 Introduction

In recent years, quartet methods for reconstructing evolutionary trees have re-
ceived considerable attention in the computational biology community [6,11]. In
comparison with other phylogenetic methods, an advantage of quartet methods
is, e.g., that they can overcome the data disparity problem (see [6] for details).
The approach is based on the fact that an evolutionary tree is uniquely char-
acterized by its set of induced quartet topologies [5]. Herein, we consider an
evolutionary tree to be an unrooted binary tree T in which the leaves are bijec-
tively labeled by a set of taxa S. A quartet, then, is a size four subset {a,b, ¢, d}
of S, and the topology for {a, b, ¢, d} induced by T simply is the four leaf subtree
of T induced by {a, b, c,d}. The three possible quartet topologies for {a,b, ¢, d}
are [abled), [ac|bd], and [ad|bc].! E.g., the topology is [ablcd] when, in T, the
paths from a to b and from ¢ to d are disjoint. The fundamental goal of quartet

* Work supported by the DFG projects “KOMET,” LA 618/3-3, and “OPAL” (opti-
mal solutions for hard problems in computational biology), NI-369/2-1.

! The fourth possible topology would be the star topology, which is not considered
here because it is not binary.
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methods is, given a set of quartet topologies, to reconstruct the corresponding
evolutionary tree. The computational interest in this paradigm derives from the
fact that the given set of quartet topologies usually is fault-prone.

In this paper, we focus on the following, perhaps most often studied opti-
mization problem in the context of quartet methods.

MINIMUM QUARTET INCONSISTENCY (MQI)

Input: A set S of n taxa and a set Qs of quartet topologies such that
there is exactly one topology for every quartet set? corresponding to S
and a positive integer k.

Question: Is there an evolutionary tree 7' where the leaves are bijective-
ly labeled by the elements from S such that the set of quartet topologies
induced by T differs from Qs in at most k quartet topologies?

MQI is NP-complete [12]. Concerning the approximability of MQI, it is known
that it is polynomial time approximable with a factor n? [11,12]. It is an open
question of [11] whether MQI can be approximated with a factor at most n or
even with a constant factor. The parameterized complexity [7] of MQI, however,
so far, has apparently been neglected—we close this gap here. Assuming that
the number k of “wrong” quartet topologies is small in comparison with the
total number of given quartet topologies, we show that MQI is fized parameter
tractable; that is, MQI can be solved exactly in worst case time O(4¥n + n*).
Observe that the input size is O(n*). It is worth noting here that the variant of
MQI where the set Qg is not required to contain a topology for every quartet is
NP-complete, even if k = 0 [16]. Hence, this excludes parameterized complexity
studies and also implies inapproximability (with any factor).

To develop our algorithm, we exhibit some nice combinatorial properties
of MQI. For instance, we point out that “global conflicts” due to erroneous
quartet topologies can be reduced to “local conflicts.” The basis for this was laid
by Bandelt and Dress [2]. This is the basic observation in order to show fixed
parameter tractability of MQI. Our approach makes it possible to construct
all evolutionary trees that can be (uniquely) obtained from the given input by
changing at most k quartet topologies. This puts the user of the algorithm in
the position to pick (e.g., based on additional biological knowledge) the probably
best, most reasonable solution or to construct a consensus tree from all solutions.
Moreover, our method also generalizes to weighted quartets.

We performed several experiments on artificial and real (fungi) data and,
thereby, showed that our algorithm (due to several tuning tricks) in practice runs
much faster than its theoretical (worst case) analysis predicts. For instance, with
a small k (e.g., k = 100), we can solve relatively large (n = 50 taxa) instances
optimally in around 40 minutes on a LINUX PC with a Pentium III 750 MHz
processor and 192 MB main memory.

A full version (containing all proofs) is available [10].

2 Note that given n species, there are (Z) = O(n?) corresponding quartet topologies.
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2 Preliminaries

Minimum quartet inconsistency. In order to find the “best” binary tree for
a given set of quartet topologies, we can ask for a tree that violates a minimum
number of topologies. In case we are given exactly one quartet topology for
every set of four taxa, this question gives the MQI problem. If there is not
a quartet topology for necessarily every set of four taxa, Ben-Dor et al. [3]
propose two solutions, namely, a heuristic approach and an exact algorithm. The
heuristic solution is based on semidefinite programming and does not guarantee
to produce the optimal solution, but has a polynomial running time. The exact
algorithm uses dynamic programming for finding the optimal solution and has
exponential running time, namely, O(m3"), where n is the number of species
and m is the number of given quartet topologies. Note that Ben-Dor et al.
run all their experiments on M QI instances, i.e., there was exactly one quartet
topology for every set of four taxa. In that case, we have m = O(n*). The memory
requirement of their exact solution is ©(2"). According to Jiang et al. [11] there
is a factor n2-approximation, and, at the same time, they asked about better
approximation results. Note that the complement problem of MQI, where one
tries to maximize |@r N Q| (Qr being the set of quartet topologies induced by
a tree T'), possesses a polynomial time approximation scheme [12].

Some notation. Assume that we are given a set of n taxa S. For a quartet
{a,b,c,d} C S, we refer to its possible quartet topologies by [ab|cd], [ac|bd], and
[ad|bc]. These are the only possible topologies up to isomorphism. A set of quartet
topologies is complete if it contains exactly one topology for every quartet of S.
A complete set of quartet topologies over S we denote by Qs. A set of quartet
topologies @ is tree-consistent [2] if there exists a tree T' such that for the set Qr
of quartet topologies induced by T', we have @ C Q7. Set @ is tree-like [2] if there
exists a tree with () = Q7. Since an evolutionary tree is uniquely characterized
by the topologies for all its quartets [5], a complete set of topologies is tree-
consistent iff it is tree-like. A set of topologies has a “conflict” whenever it is not
tree-consistent. We will call a conflict “global” when a complete set of topologies
is not tree-consistent. We call it “local” when a size three set of topologies, which
necessarily is incomplete, is not tree-consistent.

3 Global conflicts are local

Given a complete set of quartet topologies which is not tree-consistent, the results
of Bandelt and Dress [2] imply that there already is a subset of only three quartet
topologies which is not tree-consistent. This is the key to developing a fixed
parameter solution for the problem: It is sufficient to examine the size three
sets of quartet topologies and to recursively branch on those sets which are not
tree-consistent, as will be explained in Section 5.

Proposition 1 (Proposition 2 in [2]) Given a set of taza S and a complete set
of quartet topologies Qs over these taza, Qg is tree-like iff the following so-called
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substitution property holds for every five distinct taza a,b,c,d,e € S:
[ablcd] € Qg implies [ablce] € Qs or [aelcd] € Qs.

In the following, we show that in Proposition 1, we can replace the substitu-
tion property introduced by Bandelt and Dress with the more common term
of tree-consistency. This is because, for an incomplete set of only three topolo-
gies, the substitution property is tightly connected to the tree-consistency of the
topologies. We will state this in the following technical Lemmas 1 and 2 (proofs
omitted, see [10]) and later use it to give, in Theorem 1, another interpretation
of Proposition 1.

Lemma 1 Three topologies involving more than five taza are tree-consistent.

When searching for local conflicts, Lemma 1 makes it possible to focus on the
case of three topologies involving only five taxa. If the substitution property, as
given in Proposition 1, is not satisfied, we say that the topologies for the quartets
{a,b,e,d}, {a,b,c,e}, and {a,c,d, e} contradict the substitution property.

Lemma 2 For a given a set of taza S, three topologies consisting of taxa from S
are tree-consistent iff they do not contradict the substitution property.

Note that Lemma 2 involving a necessarily incomplete set of three topologies does
not generalize from size three to an incomplete set of arbitrary size, as exhibited
in the following example. For taxa {a,b,c,d,e, f}, consider the incomplete set
of topologies [ab|cd], [ab|ce], [be|de], [cd|ef], and [af|de]. Without going into the
details, we only state here that these topologies are not tree-consistent, although
there are no three topologies which contradict the substitution property.

Theorem 1 now will make it clearer that “global” tree-consistency of a com-
plete set of topologies reflects in “local” tree-consistency of every three topologies
taken from this set.

Theorem 1 Given a set of taza S and a complete set of quartet topologies Qg
over S, Qs is tree-like (and, thus, tree-consistent) iff every set of three topologies
from Qg is tree-consistent.

Proof. Due to Lemma 2 we may replace the substitution property in Proposi-
tion 1 with tree constistency. This gives the result. O

When we have a complete set of topologies Qg for a set of taxa S, we do not
necessarily know whether the set is tree-like or not. If it is not, we can, according
to Theorem 1, track down a subset of three topologies that is not tree-consistent.
Our goal will be to detect all these local conflicts. This will be the preprocessing
stage of the algorithm that will be described in Section 5, in order to (try to)
“repair” the conflicts in a succeeding stage of the algorithm. We can find all these
local conflicts in time O(n®) as follows. Since, following Lemma 1, only three
topologies involving five taxa can form a local conflict, it suffices to consider all
size five sets of taxa {a,b,c,d,e} C S. There are five quartets over this size five
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set of taxa, namely, {a,b,c,d}, {a,b,c, e}, {a,b,d, e}, {a,c,d, e}, and {b,c,d, e}.
For the topologies of these quartets, we can test, in constant time, whether there
are three among them that are not tree-consistent. Doing so for every size five
set, we will, if (s is not tree-consistent, certainly obtain a size three subset of
(s which is not tree-consistent. Moreover, from Lemma 2 we know that we find
all these local conflicts in time O(n?).

We can improve this time bound for the preprocessing stage of the algorithm
to be described in Section 5 with the following result by Bandelt and Dress [2].
They show that it is sufficient to restrict our attention to the size five sets
containing some arbitrarily fixed taxon f.

Proposition 2 (Proposition 6 in [2]) Given a set of taza S, a complete set of
quartet topologies Q g, and some tazon f € S, then Qg is tree-like iff every size
five set of taxa which contains f satisfies the substitution property.

Following Proposition 2, we can select some arbitrary f € S and examine only
the size five sets involving f. Similar to our procedure described above, we con-
sider every such size five set containing f separately. Among the topologies over
this size five set, we search the size three sets which are not tree-consistent. If the
set of quartet topologies (s is not tree-consistent, we will find a size three set
of quartet topologies which is not tree-consistent. Finding these local conflicts
which involve f can be done in time O(n?).

4 Combinatorial characterization of local conflicts

Given three topologies, we need to decide whether they are tree-consistent or
not. Directly using the definition of tree-consistency turns out to be a rather
technical, troublesome task, since we have to reason whether or not a tree topol-
ogy exists that induces the topologies. Similarly, it can be difficult to test, for the
topologies, whether or not they contradict the substitution property. To make
things less technical and easier to grasp, we subsequently give a useful combi-
natorial characterization of local conflicts, i.e., three topologies which are not
tree-consistent. Note that in the following definition, we distinguish two possible
orientations of a quartet topology [ab|cd], namely, [ablcd], with a,b on its left

hand side and ¢, d on its right hand side, and [cd|ab], with the sides interchanged.

Definition 1. Given a set of topologies where each of the topologies is assigned
an orientation, let | be the number of different taza occurring in the left hand
sides of the topologies and let r be the number of different taxa occurring in the
right hand sides of the topologies. The signature, then, is the pair (I,r) that, over
all possible orientations for these topologies, minimizes I.

Theorem 2 Three quartet topologies are not tree-consistent iff they involve five
taza and their signature is (3,4) or (4,4).
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Fig. 1. Possible trees for [ab|cd] and taxon e in the proof of Theorem 2.

Proof. (=) We show that, given three topologies 1, t2, and ¢3 which are not
tree-consistent, they involve five taxa and have signature (3,4) or (4,4). From
Lemma 2, we know that three topologies are not tree-consistent iff they con-
tradict the substitution property. To recall, three topologies contradict the sub-
stitution property if, for one of these topologies, w.l.o.g., t; = [ab|cd], neither
the topology to for quartet {a,b,c,e} is [ab|ce] nor the topology t3 for quartet
{a,c,d, e} is [ae|cd]. Therefore, the topology to is either [ac|be] or [aelbc], and
the topology t3 is either [ac|de] or [ad|ce]. By exhaustively checking the possible
combinations, we can find that the topologies involve five taxa and their signa-
ture is (3,4) (e.g., for t» = [ac|be] and t3 = [ac|de]) or (4,4) (e.g., for t2 = [ac|be]
and t3 = [ad|ce]).

(<) We are given three topologies, t1, t2, and t3, involving five taxa and
having signature (3,4) or (4,4). Assume that they are tree-consistent. Showing
that this implies signature (2, 3) or (3, 3), we prove that the assumption is wrong.
For tree-consistent ¢1, t2, and t3, we can find a tree inducing them. With, w.l.o.g.,
taxa {a,b,c,d,e} and t; = [ablcd], we mainly have two possibilities: we can
attach the leaf e on the middle edge of topology t1, as shown in Figure 1(a), or
we can attach e on one of the four side branches of ¢;, as exemplarily shown in
Figure 1(b). Considering the sets of quartet topologies induced by these trees, we
find, in each case, that the set has signature (3,3). For instance, the topologies
induced by the tree in Figure 1(a) are, besides t, [ab|ce], [ab|de], [ae|cd], and
[be|cd]. Three topologies selected from these have signature (3,3) (e.g., [ablcd],
[ab|ce], and [ae|cd]) or (2,3) (e.g., [abled], [ab|ce], and [ab|de]). O

Using Theorem 2, we can determine whether three topologies are conflicting by
simply counting the involved taxa and computing their signature.

5 Fixed parameter algorithm for MQI

In this section, we present a recursive algorithm solving MQI with parameter k.
Before calling the recursive part for the first time, one has to build the list of size
three sets of quartets whose topologies are not tree-consistent. The preparation
of this conflict list is explained in Section 3. After that, we call the recursive
procedure of the algorithm with argument k.
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The recursive procedure selects a local conflict to branch on from the conflict
list. This branching is done by changing one topology from the selected local
conflict, updating the conflict list, and calling the recursive procedure with ar-
gument k— 1 on the thereby created subcases. We will later explain how to select
and change the topologies when branching. After a topology ¢ has changed, the
algorithm updates the conflict list as follows: It (1) removes the size three sets
of quartets in the list whose topologies are now tree-consistent, and (2) adds
the size three sets of quartets not in the list whose topologies now form a local
conflict.

The recursion stops if no conflicts are left in the conflict list (we have found a
solution), or if ¥ = 0 (in case the conflict list is not empty, we did not find a so-
lution in this branch of the search tree). When a solution is found, the algorithm
outputs the current set of topologies, i.e., a complete set of quartet topologies
that is tree-like and that can be obtained by altering at most k& topologies in the
given set of topologies. From this tree-like set, of quartet topologies, it is possible
to derive the evolutionary tree in time O(n*) [4]. Thus scanning the whole search
tree, we find all solutions that we can obtain by altering at most k topologies.
Running time. For establishing an upper bound on the running time, we con-
sider the preprocessing, the update procedure, and the size of the search tree.
The preprocessing can be done in time O(n?), as explained in Section 3.

Updating the conflict list can be done in time O(n): Following Lemma 1,
local conflicts can only occur among three topologies consisting of no more than
five taxa. Therefore, having changed the topology of one quartet {a,b,c,d}, we
only have to examine the “neighborhood” of the quartet, i.e., those sets of five
taxa containing a, b, ¢, d. For every such set of five taxa, it can be examined in
constant time whether for three topologies over the five taxa, a new conflict
emerged, or whether an existing conflict has been resolved. Given taxa a, b, ¢, d,
we have n — 4 choices for a fifth taxon. Thus, O(n) is an upper bound for the
update procedure.?

Now, we consider the search tree size. By a careful selection of subcases to
branch into, we can find a way to make at most four recursive calls on an arbi-
trarily selected local conflict, i.e., for every three topologies which are not tree-
consistent. Let ¢1, 2, and t3 be three topologies which are not tree-consistent,
and let, w.l.o.g., t; = [ab|cd]. Following Lemma 1, the topologies involve only one
additional taxon, say e. Following Lemma 2, ¢, ¢5, t3 contradict the substitution
property. Given ¢; = [ab|cd], the substitution property requires topology [ab|ce]
or topology [ae|ed]. Therefore, we can, w.l.o.g., assume the following setting for
three quartets contradicting the substitution property: Topology t1 = [ab|ed],
topology to is the topology for quartet {a,b,c,e} different from [ab|ce], and
topology t3 is a topology for quartet {a,c,d, e} different from [ae|cd]. In order

% In fact, as explained in Section 3, we only consider sets of five species containing
a designated taxon f. Therefore, if we change the topology of a quartet {a,b, c, d}
which does not contain the designated taxon f, then we only have to consider one
set of five topologies, namely, {a, b, c,d, f}. In this special case, the update procedure
can be done in time O(1).
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to change the three topologies to satisfy the substitution property, we have the
following possibilities. We can change t1; either (1) we change ¢1 to [ac|bd], or (2)
we change t; to [ad|bc]. Otherwise, we can assume that ¢; is not changed. Then,
we have to (3) change t5 to [ab|ce] or (4) change t3 to [ae|cd], because these are
the only remaining possibilities to satisfy the substitution property. Since the
height of the search tree is at most k, the preceding considerations justify an
upper bound of 4% on the exponential growth and yield the following theorem,
which summarizes our findings.

Theorem 3 The MQI problem can be solved in time O(4* - n + n*).

Note that this running time is not only true for the algorithm reporting one
solution, but also for reporting all evolutionary trees satisfying the requirement.
Our algorithm has O(kn*) memory requirement, where the input size is already
O(n*). The correctness of the algorithm follows easily from Theorem 1.

6 Improving the running time in practice

Besides improving the worst case bounds on the algorithm’s running time, we
can also extend the algorithm in order to improve the running time in practice
without affecting the upper bounds. In this section, we collect some ideas for
such heuristic improvements.

Fixing topologies. It does not make sense to change a topology which, at some
previous level of recursion, has been altered, or for which we explicitly decided
not to alter it. If we decide not to alter a topology in a later stage of recursion,
we call this fizing the topology. This avoids redundant branchings in the search
tree.

Forcing topologies to change. It might be possible to identify topologies
which necessarily have to be altered in order to find a solution. We call this
forcing a topology to change. The ideas described here are similar to those used
in the so-called reduction to problem kernel for the 3-Hitting Set problem [13].

Lemma 3 Consider an instance of the MQI problem in which quartet q has
topology t. If there are more than 3k distinct local conflicts which contain t then,
in a solution for this instance, the topology for q is different from t.

Proof. In Section 3, we showed that three topologies only can form a local con-
flict if there are not more than five taxa occurring in them (see Lemma 1).
For five taxa, there are five quartets consisting of these taxa, e.g., for taxa
{a,b,c,d,e} the quartets are {a,b,c,d}, {a,b,c,e}, {a,b,d e}, {a,c,d, e}, and
{b,¢,d, e}. Therefore, when given two quartet topologies t; and t», we make the
following observations. If there are more than five taxa occurring in ¢; and %o,
they cannot form a conflict with a third topology. If there are exactly five taxa
occurring in t; and t9, then there are five quartets consisting of these five taxa,
two of which are the quartets for ¢; and t,. The remaining three topologies are
the only possibilities for a topology t3 that could form a conflict with ¢; and .
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Now, consider the situation in which, for a quartet topology ¢, we have more
than 3k distinct local conflicts which contain ¢. From the preceding discussion,
we know that for any t', there are at most three topologies such that ¢ and t'
can form a conflict with it. Consequently, there must be more than & distinct
topologies ¢’ that occur in a local conflict with . We show by contradiction
that we have to alter topology ¢ to find a solution. Assume that we can find a
solution while not altering ¢. By changing a topology t', we can cover at most
three conflicts, since there are at most three local conflicts containing both ¢
and t'. Therefore, by changing k topologies, we can resolve at most 3k local
conflicts. This contradicts our assumption and shows that we have to alter ¢ to
find a solution. O

Recognizing hopeless situations. Now, we describe situations in which, at
some level in the search tree when we are allowed to alter at most &k topologies,
we can recognize that we cannot find a solution. Thus, we can “cut off,” i.e.,
omit, complete subtrees of the search tree.

Having a local conflict consisting only of fixed topologies, we obviously cannot
resolve this conflict while not changing one of the fixed topologies. As another
observation, we know that for a solution, we have to change the forced topologies.
If after identifying these forced topologies, there are more than k of them, it is
obvious that a solution is not possible—already by changing these topologies,
we would change more topologies than we are allowed to.

The following two lemmas contain more involved observations. Their proofs
use similar ideas as used in the proof of Lemma 3 (see [10]). If a local conflict
does not contain a topology which is forced to change, then we call it an unforced
local conflict.

Lemma 4 Let us have an instance of the MQI problem in which we have iden-
tified p conflicts which are forced to change. If the number of unforced local
conflicts is greater than 3(k — p)k, then the instance has no solution.

Lemma 5 An instance of the MQI problem in which the number of local con-
flicts is greater than 6(n — 4)k has no solution.

Clever branching. Applying the rules described above will also significantly
improve our situation when branching. For the general branching situation on
a local conflict, we have shown in Section 5 that it is sufficient to branch into
four subcases. Regarding topologies forced to change, we can, however, reduce
the number of subcases. When we have identified a topology ¢ which is forced
to change, it is sufficient to branch into two subcases: one for each alternative
topology of ¢. Regarding fixed topologies, we can take advantage of local conflicts
which contain fixed topologies. Having a local conflict with one or two fixed
topologies, we omit the subcases which change a fixed topology. This will reduce
the number of subcases to three, two, or even one subcase.

Preprocessing by the Q*-method. The algorithmic improvements described
above do not sacrifice the guarantee to find the optimal solutions. Using these
improvements, we will find every solution that we would find without them. This
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is not true for the following idea. We propose to use the Q*-method described
by Berry and Gascuel [4] as a preprocessing for our algorithm. The Q*-method
produces the maximum subset of the given quartet topologies that is tree-like.
In the combined use with our algorithm, we fix these quartet topologies from
the beginning. Therefore, our algorithm will compute the minimum number of
quartet topologies we have to change in order to obtain a tree-like set of topolo-
gies that contains the topologies fixed by the Q*-method. The tree we obtain
will be a refinement of the tree reported by the Q*-method which may contain
unresolved branches. Thus, we cannot guarantee that the reported tree is the
optimal solution for the MQI problem. On real data, however, it is the opti-
mal tree with high certainty: Suppose it is not. Then there are four taxa a,b,c,
and d that are arranged in another way by the Q*-method than they would be
arranged in the optimal solution for the MQI problem. As we are working on a
complete set of topologies, this would imply that there are at least n — 3 quartets
that would make the same wrong prediction for the arrangement of a, b, ¢, d: the
quartet {a,b,c,d} and, for all e € S — {a, b, ¢,d}, one quartet over {a,b, c,d, e}
that involves e. On real data, this is very unlikely. Our experiments described in
Section 8 support the conjecture that with the preprocessing by the Q*-method,
we find every solution that the MQI algorithm would find. Moreover, the exper-
iments show that this enhancement allows us to process much larger instances
than we could without using it.

7 Related problems

We now come to some variants and generalizations of the basic MQI problem
and their fixed parameter tractability. These variations arise in practice due to
the fact that often quartet inference methods cannot non-ambiguously predict a
topology for every quartet. Perhaps the most natural generalization of MQI is
to consider weighted quartet topologies.

WEIGHTED MQI. Weights arise since a quartet inference method can predict
the topology for a quartet with more or less certainty. Therefore, we can assign
weights to the quartet topologies reflecting the certainty they are predicted with.
Given a complete set of weighted topologies Qs and a positive integer k, we
distinguish two different questions.

1. Assume that we are given a complete set of weighted topologies Qg, with
positive real weights, and a positive integer k. A binary tree is a candidate
for a solution if the set of quartet topologies induced by this tree differs from
s in the topologies for at most k£ quartets. Can we, among all candidate
trees satisfying this property, find the one such that the topologies in Qg
which are not induced by the tree have minimum total weight?

The algorithm in Section 5 can compute all solution trees. So, we can, with-
out sacrificing the given time bounds, find this tree among the solution trees
for which the “wrong” quartet topologies have minimal total weight.

2. Assume that we are given a complete set of weighted topologies Qg, each
topology having a real weight > 1, and a positive real K. Is there a binary



LCNS, VoL 2089, pp. 241-256, SPRINGER 2001

tree such that the quartet topologies induced by the tree differ from the
given topologies only for topologies having total weight less than K?
Again, we can use the algorithm presented in Section 5. When branching
into different subcases, the time analysis of the algorithm relied on the fact
that in each subcase at least one quartet topology is changed, i.e., added to
the “wrong” topologies. In the current situation of weighted topologies with
weights > 1, each subcase changes quartet topologies having a total weight
of at least 1. The time analysis of our algorithm is, therefore, still valid and
the time bounds remain the same.

Allowing arbitrarily small weights in question 2, the problem cannot be fixed
parameter tractable, unless P = NP. To see this, take an instance of unweighted
MQI with parameter k. We can turn this instance into an instance of weighted
MQI by assigning all topologies weight 1/k and setting the parameter to 1. A
fixed parameter algorithm for the problem with arbitrary weights > 0 would thus
give a polynomial time solution for MQI, which contradicts the NP-completeness
of MQI unless P = NP. Having, however, weights of size at least e for some
positive real €, the problem is fixed parameter tractable as we described here for
the special case that e = 1 (similar to WEIGHTED VERTEX COVER in [14]).
Underspecified MQI. Due to lack of information or due to ambiguous results,
a quartet inference method may not be able to compute a topology for every
quartet, so there may be quartets for which no topology is given. Assuming a
bounded number of quartets with missing topology, we formulate the problem as
follows. Given a set S of taxa, integers k and k', and a set of topologies Q g, such
that Qs contains quartet topologies for all quartets over S except for k' many.
Then, we ask whether there is a binary tree such that the quartet topologies
induced by the tree differ from the given topologies only for k topologies.

The set of topologies is “underspecified” by k' topologies. We can solve the
problem as follows. Having three possible topologies for each quartet, we can, for
a quartet without given topology, branch into three subcases, one for each of its
three possible topologies. Having selected a topology for each such quartet, we
run the algorithm from Section 5. The resulting algorithm has time complexity
O3 - 4% . 4+ n®) and shows that the problem is fixed parameter tractable for
parameters k and k'. Note that for unbounded &’ this problem is NP-complete
even for k = 0 [16] and, therefore, is not fixed parameter tractable.

We only briefly mention another variant of MQI, Overspecified MQI: In that
problem, we are, compared to MQI, given an additional integer k" and two
topologies instead of one for k" many quartets. For these quartets, we are free to
choose one of the given topologies. In a similar way as for underspecified MQI, we
can show that overspecified MQI is fixed parameter tractable for parameters k
and k".

8 Experimental evaluation

To investigate the usefulness and practical relevance of the algorithm for un-
weighted MQI, we performed experiments on artificial as well as on real data
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Fig. 2. Comparing running time and search tree size for different values of n and k.

from fungi. The implementation of the algorithm was done using the program-
ming language C. The algorithm contains the enhancements described in Sec-
tion 6. The combined use with the Q*-method was, however, only applied when
processing the fungi data, not when processing the artificial data. The reported
tests were done on a LINUX PC with a Pentium IIT 750 MHz processor and 192
MB main memory.

8.1 Artificial data

We performed experiments on artificially generated data in order to find out
which kind of data sets our algorithm can be especially useful for. For a given
number n of taxa and parameter k, we produce a data file as follows. We generate
arandom evolutionary tree for n taxa and derive the quartet topologies from that
tree. Then, we change k distinct, arbitrarily selected topologies in a randomly
chosen way. This results in an MQI instance that certainly can be solved with
parameter k. For each pair of values for n and k, ten different data sets were
created. The reported results are the average for test runs on ten data sets.

We experimented with different values of n and k. As a measure of perfor-
mance, we use two values: We report the processing time and, since processing
time is heavily influenced by system conditions, e.g., memory access time in case
of cache faults, also the search tree size. The search tree size is the number of the
search trees nodes, both inner nodes and leaves, and it reflects the exponential
growth of the algorithm’s running time.

Figure 2(a) gives a table of results for different values of n and k. Regarding
the processing time, we note, on the one hand, the increasing time for fixed n and
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Fig. 3. (a) Speed-up when using Q* preprocessing. (b) Optimal tree found for a set
of 21 Amanita species and one outgroup taxon; indicated is the grouping of Amanita
species into 7 sections and 2 subgenera.

growing k. On the other hand, we observe that for moderate values of k, we can
process large instances of the problem, e.g., n = 50 and & = 100 in 40 minutes.
For comparison of the algorithm’s performance, consider the results reported
by Ben-Dor et al. [3], who solve MQI instances also giving guaranteed optimal
results. They only report about processing up to 20 taxa and list, admittedly
for a high number of erroneous topologies, a running time of 128 hours for this
case (on a SUN Ultra-4 with 300 MHz).

In Figure 2(b) we compare, on a logarithmic scale, the theoretical upper
bound of 4% to the real size of the search tree. For each fixed number of taxa n,
we give a graph displaying the growth of search tree size for increasing k. The
search trees are, by far, smaller than the 4* bound. This is mainly due to the
practical improvements of the algorithm (see Section 6). We also note that for
equal value of k, a higher number n of taxa often results in a smaller search tree.

8.2 Real data

Using our algorithm, we analyzed the evolutionary relationships of species from
the mushroom genus Amanita, a group that includes well-known species like the
Fly Agaric and the Death Cap. The underlying data are an alignment of nuclear
DNA sequences coding for the D1/D2 region of the ribosomal large subunit
(alignment length 576) from Amanita species and one outgroup taxon, as used
by Weif et al. [18]. We inferred the quartet topologies by (1) using dnadist
from the Phylip package [9] to compute pairwise distances with the maximum
likelihood metric, and (2) using distquart from the Phyloquart package [4] to
infer quartet topologies based on the distances.

The analysis was done by a preprocessing of the data using the Q*-method,
also taken from the Phyloquart package. Experiments on small instances, e.g.,
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10 taxa, show that all solutions we find without using the Q*-method are also
found when using it. Using the Q*-method, however, results in a significant
speed-up of the processing. Figure 3(a) shows this impact for small numbers
of Amanita species. Note, however, that the speed-up heavily depends on the
data. In Figure 3(a) and in the following, we neglect the time needed for the
preprocessing by the Q*-method, which is, e.g., 0.11 seconds for n = 12.

We processed a set of n = 22 taxa in 35 minutes. The resulting tree was
rooted using the outgroup taxon Limacella glioderma and is displayed in Fig-
ure 3(b). We found the best solution for k& = 979 for the given 7315 quartet
topologies. The Q*-method had fixed 41 percent of the quartet topologies in ad-
vance. Considering the tree, the grouping of taxa is consistent with the grouping
into seven sections supported by Weif} et al. [18], who used the distance method
neighbor joining, heuristic parsimony methods, and maximum likelihood estima-
tions. Particularily, our grouping is nearly identical to the topology revealed by
Weif} et al. using maximum likelihood estimation. This topology is well compati-
ble with classification concepts based on morphological characters, e.g., the sister
group relationship of sections Vaginatae and Caesareae, and the monophyly of
subgenus Amanita.

One might hope that quality of quartet inference techniques will improve in
the future. This would lead to instances requiring smaller values of k.

9 Conclusion

We showed that the Minimum Quartet Inconsistency problem can be solved in
worst case time O(4%n + n*) when parameter k is the number of faulty quartet
topologies. This means that the problem is fixed parameter tractable. Several
ideas for tuning the algorithm show that the practical performance of the al-
gorithm is much better that the theoretical bound given above. This is clearly
expressed by our experimental results. Note that there is an ongoing discussion
about the usefulness of quartet methods: St. John et al. [15] give a rather crit-
ical exposition of the practical performance of quartet methods (in particular,
quartet puzzling) in comparison with the neighbor joining method, which is in
opposition to results reported by Strimmer and v. Haeseler [17].

Concerning future work, we want to extend our experiments to weighted
quartet topologies and to other data. Also, the fact that we can obtain all op-
timal and near-optimal solutions and the usefulness of this deserves further in-
vestigation. From a parameterized complexity point of view, it remains an open
question to find a so-called reduction to problem kernel (see [1,7, 8] for details).
The further reduction of the tree size concerning theoretical, as well as experi-
mental bounds, is a worthwhile future challenge.
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