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Minimum Quartet Inonsistenyis Fixed Parameter TratableJens Gramm? Rolf NiedermeierWilhelm-Shikard-Institut f�ur Informatik, Universit�at T�ubingen,Sand 13, D-72076 T�ubingen, Fed. Rep. of Germanygramm,niedermr�informatik.uni-tuebingen.deAbstrat. We study the parameterized omplexity of the problem toreonstrut a binary (evolutionary) tree from a omplete set of quartettopologies in the ase of a limited number of errors. More preisely, weare given n taxa, exatly one topology for every subset of 4 taxa, anda positive integer k (the parameter). Then, the Minimum Quartet In-onsisteny (MQI) problem is the question of whether we an �nd anevolutionary tree induing a set of quartet topologies that di�ers from thegiven set in only k quartet topologies. MQI is NP-omplete. However,we an ompute the required tree in worst ase time O(4k � n + n4)|the problem is �xed parameter tratable. Our experimental results showthat in pratie, also based on heuristi improvements proposed by us,even a muh smaller exponential growth an be ahieved. We extend the�xed parameter tratability result to weighted versions of the problem.In partiular, our algorithm an produe all solutions that resolve atmost k errors.1 IntrodutionIn reent years, quartet methods for reonstruting evolutionary trees have re-eived onsiderable attention in the omputational biology ommunity [6, 11℄. Inomparison with other phylogeneti methods, an advantage of quartet methodsis, e.g., that they an overome the data disparity problem (see [6℄ for details).The approah is based on the fat that an evolutionary tree is uniquely har-aterized by its set of indued quartet topologies [5℄. Herein, we onsider anevolutionary tree to be an unrooted binary tree T in whih the leaves are bije-tively labeled by a set of taxa S. A quartet, then, is a size four subset fa; b; ; dgof S, and the topology for fa; b; ; dg indued by T simply is the four leaf subtreeof T indued by fa; b; ; dg. The three possible quartet topologies for fa; b; ; dgare [abjd℄, [ajbd℄, and [adjb℄.1 E.g., the topology is [abjd℄ when, in T , thepaths from a to b and from  to d are disjoint. The fundamental goal of quartet? Work supported by the DFG projets \KOMET," LA 618/3-3, and \OPAL" (opti-mal solutions for hard problems in omputational biology), NI-369/2-1.1 The fourth possible topology would be the star topology, whih is not onsideredhere beause it is not binary.
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methods is, given a set of quartet topologies, to reonstrut the orrespondingevolutionary tree. The omputational interest in this paradigm derives from thefat that the given set of quartet topologies usually is fault-prone.In this paper, we fous on the following, perhaps most often studied opti-mization problem in the ontext of quartet methods.Minimum Quartet Inonsisteny (MQI)Input: A set S of n taxa and a set QS of quartet topologies suh thatthere is exatly one topology for every quartet set2 orresponding to Sand a positive integer k.Question: Is there an evolutionary tree T where the leaves are bijetive-ly labeled by the elements from S suh that the set of quartet topologiesindued by T differs from QS in at most k quartet topologies?MQI is NP-omplete [12℄. Conerning the approximability of MQI, it is knownthat it is polynomial time approximable with a fator n2 [11, 12℄. It is an openquestion of [11℄ whether MQI an be approximated with a fator at most n oreven with a onstant fator. The parameterized omplexity [7℄ ofMQI, however,so far, has apparently been negleted|we lose this gap here. Assuming thatthe number k of \wrong" quartet topologies is small in omparison with thetotal number of given quartet topologies, we show that MQI is �xed parametertratable; that is, MQI an be solved exatly in worst ase time O(4kn + n4).Observe that the input size is O(n4). It is worth noting here that the variant ofMQI where the set QS is not required to ontain a topology for every quartet isNP-omplete, even if k = 0 [16℄. Hene, this exludes parameterized omplexitystudies and also implies inapproximability (with any fator).To develop our algorithm, we exhibit some nie ombinatorial propertiesof MQI. For instane, we point out that \global onits" due to erroneousquartet topologies an be redued to \loal onits." The basis for this was laidby Bandelt and Dress [2℄. This is the basi observation in order to show �xedparameter tratability of MQI. Our approah makes it possible to onstrutall evolutionary trees that an be (uniquely) obtained from the given input byhanging at most k quartet topologies. This puts the user of the algorithm inthe position to pik (e.g., based on additional biologial knowledge) the probablybest, most reasonable solution or to onstrut a onsensus tree from all solutions.Moreover, our method also generalizes to weighted quartets.We performed several experiments on arti�ial and real (fungi) data and,thereby, showed that our algorithm (due to several tuning triks) in pratie runsmuh faster than its theoretial (worst ase) analysis predits. For instane, witha small k (e.g., k = 100), we an solve relatively large (n = 50 taxa) instanesoptimally in around 40 minutes on a LINUX PC with a Pentium III 750 MHzproessor and 192 MB main memory.A full version (ontaining all proofs) is available [10℄.2 Note that given n speies, there are �n4� = O(n4) orresponding quartet topologies.
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2 PreliminariesMinimum quartet inonsisteny. In order to �nd the \best" binary tree fora given set of quartet topologies, we an ask for a tree that violates a minimumnumber of topologies. In ase we are given exatly one quartet topology forevery set of four taxa, this question gives the MQI problem. If there is nota quartet topology for neessarily every set of four taxa, Ben-Dor et al. [3℄propose two solutions, namely, a heuristi approah and an exat algorithm. Theheuristi solution is based on semide�nite programming and does not guaranteeto produe the optimal solution, but has a polynomial running time. The exatalgorithm uses dynami programming for �nding the optimal solution and hasexponential running time, namely, O(m3n), where n is the number of speiesand m is the number of given quartet topologies. Note that Ben-Dor et al.run all their experiments on MQI instanes, i.e., there was exatly one quartettopology for every set of four taxa. In that ase, we havem = O(n4). The memoryrequirement of their exat solution is �(2n). Aording to Jiang et al. [11℄ thereis a fator n2-approximation, and, at the same time, they asked about betterapproximation results. Note that the omplement problem of MQI, where onetries to maximize jQT \ Qj (QT being the set of quartet topologies indued bya tree T ), possesses a polynomial time approximation sheme [12℄.Some notation. Assume that we are given a set of n taxa S. For a quartetfa; b; ; dg � S, we refer to its possible quartet topologies by [abjd℄, [ajbd℄, and[adjb℄. These are the only possible topologies up to isomorphism. A set of quartettopologies is omplete if it ontains exatly one topology for every quartet of S.A omplete set of quartet topologies over S we denote by QS. A set of quartettopologies Q is tree-onsistent [2℄ if there exists a tree T suh that for the set QTof quartet topologies indued by T , we have Q � QT . Set Q is tree-like [2℄ if thereexists a tree with Q = QT . Sine an evolutionary tree is uniquely haraterizedby the topologies for all its quartets [5℄, a omplete set of topologies is tree-onsistent i� it is tree-like. A set of topologies has a \onit" whenever it is nottree-onsistent. We will all a onit \global" when a omplete set of topologiesis not tree-onsistent. We all it \loal" when a size three set of topologies, whihneessarily is inomplete, is not tree-onsistent.3 Global onits are loalGiven a omplete set of quartet topologies whih is not tree-onsistent, the resultsof Bandelt and Dress [2℄ imply that there already is a subset of only three quartettopologies whih is not tree-onsistent. This is the key to developing a �xedparameter solution for the problem: It is suÆient to examine the size threesets of quartet topologies and to reursively branh on those sets whih are nottree-onsistent, as will be explained in Setion 5.Proposition 1 (Proposition 2 in [2℄) Given a set of taxa S and a omplete setof quartet topologies QS over these taxa, QS is tree-like i� the following so-alled



LCNS, Vol 2089, pp. 241–256, Springer 2001

substitution property holds for every �ve distint taxa a; b; ; d; e 2 S:[abjd℄ 2 QS implies [abje℄ 2 QS or [aejd℄ 2 QS.In the following, we show that in Proposition 1, we an replae the substitu-tion property introdued by Bandelt and Dress with the more ommon termof tree-onsisteny. This is beause, for an inomplete set of only three topolo-gies, the substitution property is tightly onneted to the tree-onsisteny of thetopologies. We will state this in the following tehnial Lemmas 1 and 2 (proofsomitted, see [10℄) and later use it to give, in Theorem 1, another interpretationof Proposition 1.Lemma 1 Three topologies involving more than �ve taxa are tree-onsistent.When searhing for loal onits, Lemma 1 makes it possible to fous on thease of three topologies involving only �ve taxa. If the substitution property, asgiven in Proposition 1, is not satis�ed, we say that the topologies for the quartetsfa; b; ; dg, fa; b; ; eg, and fa; ; d; eg ontradit the substitution property.Lemma 2 For a given a set of taxa S, three topologies onsisting of taxa from Sare tree-onsistent i� they do not ontradit the substitution property.Note that Lemma 2 involving a neessarily inomplete set of three topologies doesnot generalize from size three to an inomplete set of arbitrary size, as exhibitedin the following example. For taxa fa; b; ; d; e; fg, onsider the inomplete setof topologies [abjd℄, [abje℄, [bjde℄, [djef ℄, and [af jde℄. Without going into thedetails, we only state here that these topologies are not tree-onsistent, althoughthere are no three topologies whih ontradit the substitution property.Theorem 1 now will make it learer that \global" tree-onsisteny of a om-plete set of topologies reets in \loal" tree-onsisteny of every three topologiestaken from this set.Theorem 1 Given a set of taxa S and a omplete set of quartet topologies QSover S, QS is tree-like (and, thus, tree-onsistent) i� every set of three topologiesfrom QS is tree-onsistent.Proof. Due to Lemma 2 we may replae the substitution property in Proposi-tion 1 with tree onstisteny. This gives the result. utWhen we have a omplete set of topologies QS for a set of taxa S, we do notneessarily know whether the set is tree-like or not. If it is not, we an, aordingto Theorem 1, trak down a subset of three topologies that is not tree-onsistent.Our goal will be to detet all these loal onits. This will be the preproessingstage of the algorithm that will be desribed in Setion 5, in order to (try to)\repair" the onits in a sueeding stage of the algorithm. We an �nd all theseloal onits in time O(n5) as follows. Sine, following Lemma 1, only threetopologies involving �ve taxa an form a loal onit, it suÆes to onsider allsize �ve sets of taxa fa; b; ; d; eg � S. There are �ve quartets over this size �ve
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set of taxa, namely, fa; b; ; dg, fa; b; ; eg, fa; b; d; eg, fa; ; d; eg, and fb; ; d; eg.For the topologies of these quartets, we an test, in onstant time, whether thereare three among them that are not tree-onsistent. Doing so for every size �veset, we will, if QS is not tree-onsistent, ertainly obtain a size three subset ofQS whih is not tree-onsistent. Moreover, from Lemma 2 we know that we �ndall these loal onits in time O(n5).We an improve this time bound for the preproessing stage of the algorithmto be desribed in Setion 5 with the following result by Bandelt and Dress [2℄.They show that it is suÆient to restrit our attention to the size �ve setsontaining some arbitrarily �xed taxon f .Proposition 2 (Proposition 6 in [2℄) Given a set of taxa S, a omplete set ofquartet topologies QS, and some taxon f 2 S, then QS is tree-like i� every size�ve set of taxa whih ontains f satis�es the substitution property.Following Proposition 2, we an selet some arbitrary f 2 S and examine onlythe size �ve sets involving f . Similar to our proedure desribed above, we on-sider every suh size �ve set ontaining f separately. Among the topologies overthis size �ve set, we searh the size three sets whih are not tree-onsistent. If theset of quartet topologies QS is not tree-onsistent, we will �nd a size three setof quartet topologies whih is not tree-onsistent. Finding these loal onitswhih involve f an be done in time O(n4).4 Combinatorial haraterization of loal onitsGiven three topologies, we need to deide whether they are tree-onsistent ornot. Diretly using the de�nition of tree-onsisteny turns out to be a rathertehnial, troublesome task, sine we have to reason whether or not a tree topol-ogy exists that indues the topologies. Similarly, it an be diÆult to test, for thetopologies, whether or not they ontradit the substitution property. To makethings less tehnial and easier to grasp, we subsequently give a useful ombi-natorial haraterization of loal onits, i.e., three topologies whih are nottree-onsistent. Note that in the following de�nition, we distinguish two possibleorientations of a quartet topology [abjd℄, namely, [abjd℄, with a; b on its lefthand side and ; d on its right hand side, and [djab℄, with the sides interhanged.De�nition 1. Given a set of topologies where eah of the topologies is assignedan orientation, let l be the number of di�erent taxa ourring in the left handsides of the topologies and let r be the number of di�erent taxa ourring in theright hand sides of the topologies. The signature, then, is the pair (l; r) that, overall possible orientations for these topologies, minimizes l.Theorem 2 Three quartet topologies are not tree-onsistent i� they involve �vetaxa and their signature is (3; 4) or (4; 4).
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ab deab de (b)(a)Fig. 1. Possible trees for [abjd℄ and taxon e in the proof of Theorem 2.Proof. ()) We show that, given three topologies t1, t2, and t3 whih are nottree-onsistent, they involve �ve taxa and have signature (3; 4) or (4; 4). FromLemma 2, we know that three topologies are not tree-onsistent i� they on-tradit the substitution property. To reall, three topologies ontradit the sub-stitution property if, for one of these topologies, w.l.o.g., t1 = [abjd℄, neitherthe topology t2 for quartet fa; b; ; eg is [abje℄ nor the topology t3 for quartetfa; ; d; eg is [aejd℄. Therefore, the topology t2 is either [ajbe℄ or [aejb℄, andthe topology t3 is either [ajde℄ or [adje℄. By exhaustively heking the possibleombinations, we an �nd that the topologies involve �ve taxa and their signa-ture is (3; 4) (e.g., for t2 = [ajbe℄ and t3 = [ajde℄) or (4; 4) (e.g., for t2 = [ajbe℄and t3 = [adje℄).(() We are given three topologies, t1, t2, and t3, involving �ve taxa andhaving signature (3; 4) or (4; 4). Assume that they are tree-onsistent. Showingthat this implies signature (2; 3) or (3; 3), we prove that the assumption is wrong.For tree-onsistent t1, t2, and t3, we an �nd a tree induing them. With, w.l.o.g.,taxa fa; b; ; d; eg and t1 = [abjd℄, we mainly have two possibilities: we anattah the leaf e on the middle edge of topology t1, as shown in Figure 1(a), orwe an attah e on one of the four side branhes of t1, as exemplarily shown inFigure 1(b). Considering the sets of quartet topologies indued by these trees, we�nd, in eah ase, that the set has signature (3; 3). For instane, the topologiesindued by the tree in Figure 1(a) are, besides t1, [abje℄, [abjde℄, [aejd℄, and[bejd℄. Three topologies seleted from these have signature (3; 3) (e.g., [abjd℄,[abje℄, and [aejd℄) or (2; 3) (e.g., [abjd℄, [abje℄, and [abjde℄). utUsing Theorem 2, we an determine whether three topologies are oniting bysimply ounting the involved taxa and omputing their signature.5 Fixed parameter algorithm for MQIIn this setion, we present a reursive algorithm solvingMQI with parameter k.Before alling the reursive part for the �rst time, one has to build the list of sizethree sets of quartets whose topologies are not tree-onsistent. The preparationof this onit list is explained in Setion 3. After that, we all the reursiveproedure of the algorithm with argument k.
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The reursive proedure selets a loal onit to branh on from the onitlist. This branhing is done by hanging one topology from the seleted loalonit, updating the onit list, and alling the reursive proedure with ar-gument k�1 on the thereby reated subases. We will later explain how to seletand hange the topologies when branhing. After a topology t has hanged, thealgorithm updates the onit list as follows: It (1) removes the size three setsof quartets in the list whose topologies are now tree-onsistent, and (2) addsthe size three sets of quartets not in the list whose topologies now form a loalonit.The reursion stops if no onits are left in the onit list (we have found asolution), or if k = 0 (in ase the onit list is not empty, we did not �nd a so-lution in this branh of the searh tree). When a solution is found, the algorithmoutputs the urrent set of topologies, i.e., a omplete set of quartet topologiesthat is tree-like and that an be obtained by altering at most k topologies in thegiven set of topologies. From this tree-like set of quartet topologies, it is possibleto derive the evolutionary tree in time O(n4) [4℄. Thus sanning the whole searhtree, we �nd all solutions that we an obtain by altering at most k topologies.Running time. For establishing an upper bound on the running time, we on-sider the preproessing, the update proedure, and the size of the searh tree.The preproessing an be done in time O(n4), as explained in Setion 3.Updating the onit list an be done in time O(n): Following Lemma 1,loal onits an only our among three topologies onsisting of no more than�ve taxa. Therefore, having hanged the topology of one quartet fa; b; ; dg, weonly have to examine the \neighborhood" of the quartet, i.e., those sets of �vetaxa ontaining a; b; ; d. For every suh set of �ve taxa, it an be examined inonstant time whether for three topologies over the �ve taxa, a new onitemerged, or whether an existing onit has been resolved. Given taxa a; b; ; d,we have n � 4 hoies for a �fth taxon. Thus, O(n) is an upper bound for theupdate proedure.3Now, we onsider the searh tree size. By a areful seletion of subases tobranh into, we an �nd a way to make at most four reursive alls on an arbi-trarily seleted loal onit, i.e., for every three topologies whih are not tree-onsistent. Let t1, t2, and t3 be three topologies whih are not tree-onsistent,and let, w.l.o.g., t1 = [abjd℄. Following Lemma 1, the topologies involve only oneadditional taxon, say e. Following Lemma 2, t1; t2; t3 ontradit the substitutionproperty. Given t1 = [abjd℄, the substitution property requires topology [abje℄or topology [aejd℄. Therefore, we an, w.l.o.g., assume the following setting forthree quartets ontraditing the substitution property: Topology t1 = [abjd℄,topology t2 is the topology for quartet fa; b; ; eg di�erent from [abje℄, andtopology t3 is a topology for quartet fa; ; d; eg di�erent from [aejd℄. In order3 In fat, as explained in Setion 3, we only onsider sets of �ve speies ontaininga designated taxon f . Therefore, if we hange the topology of a quartet fa; b; ; dgwhih does not ontain the designated taxon f , then we only have to onsider oneset of �ve topologies, namely, fa; b; ; d; fg. In this speial ase, the update proedurean be done in time O(1).
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to hange the three topologies to satisfy the substitution property, we have thefollowing possibilities. We an hange t1; either (1) we hange t1 to [ajbd℄, or (2)we hange t1 to [adjb℄. Otherwise, we an assume that t1 is not hanged. Then,we have to (3) hange t2 to [abje℄ or (4) hange t3 to [aejd℄, beause these arethe only remaining possibilities to satisfy the substitution property. Sine theheight of the searh tree is at most k, the preeding onsiderations justify anupper bound of 4k on the exponential growth and yield the following theorem,whih summarizes our �ndings.Theorem 3 The MQI problem an be solved in time O(4k � n+ n4).Note that this running time is not only true for the algorithm reporting onesolution, but also for reporting all evolutionary trees satisfying the requirement.Our algorithm has O(kn4) memory requirement, where the input size is alreadyO(n4). The orretness of the algorithm follows easily from Theorem 1.6 Improving the running time in pratieBesides improving the worst ase bounds on the algorithm's running time, wean also extend the algorithm in order to improve the running time in pratiewithout a�eting the upper bounds. In this setion, we ollet some ideas forsuh heuristi improvements.Fixing topologies. It does not make sense to hange a topology whih, at someprevious level of reursion, has been altered, or for whih we expliitly deidednot to alter it. If we deide not to alter a topology in a later stage of reursion,we all this �xing the topology. This avoids redundant branhings in the searhtree.Foring topologies to hange. It might be possible to identify topologieswhih neessarily have to be altered in order to �nd a solution. We all thisforing a topology to hange. The ideas desribed here are similar to those usedin the so-alled redution to problem kernel for the 3-Hitting Set problem [13℄.Lemma 3 Consider an instane of the MQI problem in whih quartet q hastopology t. If there are more than 3k distint loal onits whih ontain t then,in a solution for this instane, the topology for q is di�erent from t.Proof. In Setion 3, we showed that three topologies only an form a loal on-it if there are not more than �ve taxa ourring in them (see Lemma 1).For �ve taxa, there are �ve quartets onsisting of these taxa, e.g., for taxafa; b; ; d; eg the quartets are fa; b; ; dg, fa; b; ; eg, fa; b; d; eg, fa; ; d; eg, andfb; ; d; eg. Therefore, when given two quartet topologies t1 and t2, we make thefollowing observations. If there are more than �ve taxa ourring in t1 and t2,they annot form a onit with a third topology. If there are exatly �ve taxaourring in t1 and t2, then there are �ve quartets onsisting of these �ve taxa,two of whih are the quartets for t1 and t2. The remaining three topologies arethe only possibilities for a topology t3 that ould form a onit with t1 and t2.
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Now, onsider the situation in whih, for a quartet topology t, we have morethan 3k distint loal onits whih ontain t. From the preeding disussion,we know that for any t0, there are at most three topologies suh that t and t0an form a onit with it. Consequently, there must be more than k distinttopologies t0 that our in a loal onit with t. We show by ontraditionthat we have to alter topology t to �nd a solution. Assume that we an �nd asolution while not altering t. By hanging a topology t0, we an over at mostthree onits, sine there are at most three loal onits ontaining both tand t0. Therefore, by hanging k topologies, we an resolve at most 3k loalonits. This ontradits our assumption and shows that we have to alter t to�nd a solution. utReognizing hopeless situations. Now, we desribe situations in whih, atsome level in the searh tree when we are allowed to alter at most k topologies,we an reognize that we annot �nd a solution. Thus, we an \ut o�," i.e.,omit, omplete subtrees of the searh tree.Having a loal onit onsisting only of �xed topologies, we obviously annotresolve this onit while not hanging one of the �xed topologies. As anotherobservation, we know that for a solution, we have to hange the fored topologies.If after identifying these fored topologies, there are more than k of them, it isobvious that a solution is not possible|already by hanging these topologies,we would hange more topologies than we are allowed to.The following two lemmas ontain more involved observations. Their proofsuse similar ideas as used in the proof of Lemma 3 (see [10℄). If a loal onitdoes not ontain a topology whih is fored to hange, then we all it an unforedloal onit.Lemma 4 Let us have an instane of the MQI problem in whih we have iden-ti�ed p onits whih are fored to hange. If the number of unfored loalonits is greater than 3(k � p)k, then the instane has no solution.Lemma 5 An instane of the MQI problem in whih the number of loal on-its is greater than 6(n� 4)k has no solution.Clever branhing. Applying the rules desribed above will also signi�antlyimprove our situation when branhing. For the general branhing situation ona loal onit, we have shown in Setion 5 that it is suÆient to branh intofour subases. Regarding topologies fored to hange, we an, however, reduethe number of subases. When we have identi�ed a topology t whih is foredto hange, it is suÆient to branh into two subases: one for eah alternativetopology of t. Regarding �xed topologies, we an take advantage of loal onitswhih ontain �xed topologies. Having a loal onit with one or two �xedtopologies, we omit the subases whih hange a �xed topology. This will reduethe number of subases to three, two, or even one subase.Preproessing by the Q�-method. The algorithmi improvements desribedabove do not sari�e the guarantee to �nd the optimal solutions. Using theseimprovements, we will �nd every solution that we would �nd without them. This
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is not true for the following idea. We propose to use the Q�-method desribedby Berry and Gasuel [4℄ as a preproessing for our algorithm. The Q�-methodprodues the maximum subset of the given quartet topologies that is tree-like.In the ombined use with our algorithm, we �x these quartet topologies fromthe beginning. Therefore, our algorithm will ompute the minimum number ofquartet topologies we have to hange in order to obtain a tree-like set of topolo-gies that ontains the topologies �xed by the Q�-method. The tree we obtainwill be a re�nement of the tree reported by the Q�-method whih may ontainunresolved branhes. Thus, we annot guarantee that the reported tree is theoptimal solution for the MQI problem. On real data, however, it is the opti-mal tree with high ertainty: Suppose it is not. Then there are four taxa a,b,,and d that are arranged in another way by the Q�-method than they would bearranged in the optimal solution for the MQI problem. As we are working on aomplete set of topologies, this would imply that there are at least n�3 quartetsthat would make the same wrong predition for the arrangement of a; b; ; d: thequartet fa; b; ; dg and, for all e 2 S � fa; b; ; dg, one quartet over fa; b; ; d; egthat involves e. On real data, this is very unlikely. Our experiments desribed inSetion 8 support the onjeture that with the preproessing by the Q�-method,we �nd every solution that theMQI algorithm would �nd. Moreover, the exper-iments show that this enhanement allows us to proess muh larger instanesthan we ould without using it.7 Related problemsWe now ome to some variants and generalizations of the basi MQI problemand their �xed parameter tratability. These variations arise in pratie due tothe fat that often quartet inferene methods annot non-ambiguously predit atopology for every quartet. Perhaps the most natural generalization of MQI isto onsider weighted quartet topologies.Weighted MQI. Weights arise sine a quartet inferene method an preditthe topology for a quartet with more or less ertainty. Therefore, we an assignweights to the quartet topologies reeting the ertainty they are predited with.Given a omplete set of weighted topologies QS and a positive integer k, wedistinguish two di�erent questions.1. Assume that we are given a omplete set of weighted topologies QS , withpositive real weights, and a positive integer k. A binary tree is a andidatefor a solution if the set of quartet topologies indued by this tree di�ers fromQS in the topologies for at most k quartets. Can we, among all andidatetrees satisfying this property, �nd the one suh that the topologies in QSwhih are not indued by the tree have minimum total weight?The algorithm in Setion 5 an ompute all solution trees. So, we an, with-out sari�ing the given time bounds, �nd this tree among the solution treesfor whih the \wrong" quartet topologies have minimal total weight.2. Assume that we are given a omplete set of weighted topologies QS , eahtopology having a real weight � 1, and a positive real K. Is there a binary
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tree suh that the quartet topologies indued by the tree di�er from thegiven topologies only for topologies having total weight less than K?Again, we an use the algorithm presented in Setion 5. When branhinginto di�erent subases, the time analysis of the algorithm relied on the fatthat in eah subase at least one quartet topology is hanged, i.e., added tothe \wrong" topologies. In the urrent situation of weighted topologies withweights � 1, eah subase hanges quartet topologies having a total weightof at least 1. The time analysis of our algorithm is, therefore, still valid andthe time bounds remain the same.Allowing arbitrarily small weights in question 2, the problem annot be �xedparameter tratable, unless P = NP. To see this, take an instane of unweightedMQI with parameter k. We an turn this instane into an instane of weightedMQI by assigning all topologies weight 1=k and setting the parameter to 1. A�xed parameter algorithm for the problem with arbitrary weights> 0 would thusgive a polynomial time solution forMQI, whih ontradits theNP-ompletenessof MQI unless P = NP. Having, however, weights of size at least � for somepositive real �, the problem is �xed parameter tratable as we desribed here forthe speial ase that � = 1 (similar to Weighted VertexCover in [14℄).Underspei�ed MQI. Due to lak of information or due to ambiguous results,a quartet inferene method may not be able to ompute a topology for everyquartet, so there may be quartets for whih no topology is given. Assuming abounded number of quartets with missing topology, we formulate the problem asfollows. Given a set S of taxa, integers k and k0, and a set of topologies QS , suhthat QS ontains quartet topologies for all quartets over S exept for k0 many.Then, we ask whether there is a binary tree suh that the quartet topologiesindued by the tree di�er from the given topologies only for k topologies.The set of topologies is \underspei�ed" by k0 topologies. We an solve theproblem as follows. Having three possible topologies for eah quartet, we an, fora quartet without given topology, branh into three subases, one for eah of itsthree possible topologies. Having seleted a topology for eah suh quartet, werun the algorithm from Setion 5. The resulting algorithm has time omplexityO(3k0 � 4k � n+ n5) and shows that the problem is �xed parameter tratable forparameters k and k0. Note that for unbounded k0 this problem is NP-ompleteeven for k = 0 [16℄ and, therefore, is not �xed parameter tratable.We only briey mention another variant ofMQI, Overspei�ed MQI: In thatproblem, we are, ompared to MQI, given an additional integer k00 and twotopologies instead of one for k00 many quartets. For these quartets, we are free tohoose one of the given topologies. In a similar way as for underspei�edMQI, wean show that overspei�ed MQI is �xed parameter tratable for parameters kand k00.8 Experimental evaluationTo investigate the usefulness and pratial relevane of the algorithm for un-weighted MQI, we performed experiments on arti�ial as well as on real data
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(a) (b)Fig. 2. Comparing running time and searh tree size for di�erent values of n and k.from fungi. The implementation of the algorithm was done using the program-ming language C. The algorithm ontains the enhanements desribed in Se-tion 6. The ombined use with the Q�-method was, however, only applied whenproessing the fungi data, not when proessing the arti�ial data. The reportedtests were done on a LINUX PC with a Pentium III 750 MHz proessor and 192MB main memory.8.1 Arti�ial dataWe performed experiments on arti�ially generated data in order to �nd outwhih kind of data sets our algorithm an be espeially useful for. For a givennumber n of taxa and parameter k, we produe a data �le as follows. We generatea random evolutionary tree for n taxa and derive the quartet topologies from thattree. Then, we hange k distint, arbitrarily seleted topologies in a randomlyhosen way. This results in an MQI instane that ertainly an be solved withparameter k. For eah pair of values for n and k, ten di�erent data sets werereated. The reported results are the average for test runs on ten data sets.We experimented with di�erent values of n and k. As a measure of perfor-mane, we use two values: We report the proessing time and, sine proessingtime is heavily inuened by system onditions, e.g., memory aess time in aseof ahe faults, also the searh tree size. The searh tree size is the number of thesearh trees nodes, both inner nodes and leaves, and it reets the exponentialgrowth of the algorithm's running time.Figure 2(a) gives a table of results for di�erent values of n and k. Regardingthe proessing time, we note, on the one hand, the inreasing time for �xed n and
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running time in se.n no Q� with Q�8 0.46 0.36 (21%)a9 3.41 0.85 (32%)10 35.96 2.68 (38%)11 617.56 4.11 (41%)12 7039.82 5.44 (43%)a Perentage of quartettopologies �xed by Q�
A. fulvaA. nivalisA. vaginataA. eiliaeA. aesareaA. longistriataA. inarnatifoliaA. miraA. gemmataA. pantherinaA. musaria
Limaella gliodermaA. larisquamosaA. volvataA. avellaneosquamosaA. itrinaA. exelsaA. phalloidesA. subjunquilleaA. fuligineaA. japoniaA. solitaria

VaginataeCaesareaeAmanitaLepidellaPhalloideaeValidae Amidella
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(a) (b)Fig. 3. (a) Speed-up when using Q� preproessing. (b) Optimal tree found for a setof 21 Amanita speies and one outgroup taxon; indiated is the grouping of Amanitaspeies into 7 setions and 2 subgenera.growing k. On the other hand, we observe that for moderate values of k, we anproess large instanes of the problem, e.g., n = 50 and k = 100 in 40 minutes.For omparison of the algorithm's performane, onsider the results reportedby Ben-Dor et al. [3℄, who solve MQI instanes also giving guaranteed optimalresults. They only report about proessing up to 20 taxa and list, admittedlyfor a high number of erroneous topologies, a running time of 128 hours for thisase (on a SUN Ultra-4 with 300 MHz).In Figure 2(b) we ompare, on a logarithmi sale, the theoretial upperbound of 4k to the real size of the searh tree. For eah �xed number of taxa n,we give a graph displaying the growth of searh tree size for inreasing k. Thesearh trees are, by far, smaller than the 4k bound. This is mainly due to thepratial improvements of the algorithm (see Setion 6). We also note that forequal value of k, a higher number n of taxa often results in a smaller searh tree.8.2 Real dataUsing our algorithm, we analyzed the evolutionary relationships of speies fromthe mushroom genus Amanita, a group that inludes well-known speies like theFly Agari and the Death Cap. The underlying data are an alignment of nulearDNA sequenes oding for the D1/D2 region of the ribosomal large subunit(alignment length 576) from Amanita speies and one outgroup taxon, as usedby Wei� et al. [18℄. We inferred the quartet topologies by (1) using dnadistfrom the Phylip pakage [9℄ to ompute pairwise distanes with the maximumlikelihood metri, and (2) using distquart from the Phyloquart pakage [4℄ toinfer quartet topologies based on the distanes.The analysis was done by a preproessing of the data using the Q�-method,also taken from the Phyloquart pakage. Experiments on small instanes, e.g.,
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10 taxa, show that all solutions we �nd without using the Q�-method are alsofound when using it. Using the Q�-method, however, results in a signi�antspeed-up of the proessing. Figure 3(a) shows this impat for small numbersof Amanita speies. Note, however, that the speed-up heavily depends on thedata. In Figure 3(a) and in the following, we neglet the time needed for thepreproessing by the Q�-method, whih is, e.g., 0:11 seonds for n = 12.We proessed a set of n = 22 taxa in 35 minutes. The resulting tree wasrooted using the outgroup taxon Limaella glioderma and is displayed in Fig-ure 3(b). We found the best solution for k = 979 for the given 7315 quartettopologies. The Q�-method had �xed 41 perent of the quartet topologies in ad-vane. Considering the tree, the grouping of taxa is onsistent with the groupinginto seven setions supported by Wei� et al. [18℄, who used the distane methodneighbor joining, heuristi parsimony methods, and maximum likelihood estima-tions. Partiularily, our grouping is nearly idential to the topology revealed byWei� et al. using maximum likelihood estimation. This topology is well ompati-ble with lassi�ation onepts based on morphologial haraters, e.g., the sistergroup relationship of setions Vaginatae and Caesareae, and the monophyly ofsubgenus Amanita.One might hope that quality of quartet inferene tehniques will improve inthe future. This would lead to instanes requiring smaller values of k.9 ConlusionWe showed that the Minimum Quartet Inonsisteny problem an be solved inworst ase time O(4kn+ n4) when parameter k is the number of faulty quartettopologies. This means that the problem is �xed parameter tratable. Severalideas for tuning the algorithm show that the pratial performane of the al-gorithm is muh better that the theoretial bound given above. This is learlyexpressed by our experimental results. Note that there is an ongoing disussionabout the usefulness of quartet methods: St. John et al. [15℄ give a rather rit-ial exposition of the pratial performane of quartet methods (in partiular,quartet puzzling) in omparison with the neighbor joining method, whih is inopposition to results reported by Strimmer and v. Haeseler [17℄.Conerning future work, we want to extend our experiments to weightedquartet topologies and to other data. Also, the fat that we an obtain all op-timal and near-optimal solutions and the usefulness of this deserves further in-vestigation. From a parameterized omplexity point of view, it remains an openquestion to �nd a so-alled redution to problem kernel (see [1, 7, 8℄ for details).The further redution of the tree size onerning theoretial, as well as experi-mental bounds, is a worthwhile future hallenge.Aknowledgment. We are grateful to Mihael Wei� from the Biology Depart-ment (Systemati Botany and Myology group), Universit�at T�ubingen, for pro-viding us with the Amanita data, supporting us in the interpretation of ourresults, and many onstrutive remarks improving the presentation signi�antly.
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