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Minimum Quartet In
onsisten
yis Fixed Parameter Tra
tableJens Gramm? Rolf NiedermeierWilhelm-S
hi
kard-Institut f�ur Informatik, Universit�at T�ubingen,Sand 13, D-72076 T�ubingen, Fed. Rep. of Germanygramm,niedermr�informatik.uni-tuebingen.deAbstra
t. We study the parameterized 
omplexity of the problem tore
onstru
t a binary (evolutionary) tree from a 
omplete set of quartettopologies in the 
ase of a limited number of errors. More pre
isely, weare given n taxa, exa
tly one topology for every subset of 4 taxa, anda positive integer k (the parameter). Then, the Minimum Quartet In-
onsisten
y (MQI) problem is the question of whether we 
an �nd anevolutionary tree indu
ing a set of quartet topologies that di�ers from thegiven set in only k quartet topologies. MQI is NP-
omplete. However,we 
an 
ompute the required tree in worst 
ase time O(4k � n + n4)|the problem is �xed parameter tra
table. Our experimental results showthat in pra
ti
e, also based on heuristi
 improvements proposed by us,even a mu
h smaller exponential growth 
an be a
hieved. We extend the�xed parameter tra
tability result to weighted versions of the problem.In parti
ular, our algorithm 
an produ
e all solutions that resolve atmost k errors.1 Introdu
tionIn re
ent years, quartet methods for re
onstru
ting evolutionary trees have re-
eived 
onsiderable attention in the 
omputational biology 
ommunity [6, 11℄. In
omparison with other phylogeneti
 methods, an advantage of quartet methodsis, e.g., that they 
an over
ome the data disparity problem (see [6℄ for details).The approa
h is based on the fa
t that an evolutionary tree is uniquely 
har-a
terized by its set of indu
ed quartet topologies [5℄. Herein, we 
onsider anevolutionary tree to be an unrooted binary tree T in whi
h the leaves are bije
-tively labeled by a set of taxa S. A quartet, then, is a size four subset fa; b; 
; dgof S, and the topology for fa; b; 
; dg indu
ed by T simply is the four leaf subtreeof T indu
ed by fa; b; 
; dg. The three possible quartet topologies for fa; b; 
; dgare [abj
d℄, [a
jbd℄, and [adjb
℄.1 E.g., the topology is [abj
d℄ when, in T , thepaths from a to b and from 
 to d are disjoint. The fundamental goal of quartet? Work supported by the DFG proje
ts \KOMET," LA 618/3-3, and \OPAL" (opti-mal solutions for hard problems in 
omputational biology), NI-369/2-1.1 The fourth possible topology would be the star topology, whi
h is not 
onsideredhere be
ause it is not binary.
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methods is, given a set of quartet topologies, to re
onstru
t the 
orrespondingevolutionary tree. The 
omputational interest in this paradigm derives from thefa
t that the given set of quartet topologies usually is fault-prone.In this paper, we fo
us on the following, perhaps most often studied opti-mization problem in the 
ontext of quartet methods.Minimum Quartet In
onsisten
y (MQI)Input: A set S of n taxa and a set QS of quartet topologies su
h thatthere is exa
tly one topology for every quartet set2 
orresponding to Sand a positive integer k.Question: Is there an evolutionary tree T where the leaves are bije
tive-ly labeled by the elements from S su
h that the set of quartet topologiesindu
ed by T differs from QS in at most k quartet topologies?MQI is NP-
omplete [12℄. Con
erning the approximability of MQI, it is knownthat it is polynomial time approximable with a fa
tor n2 [11, 12℄. It is an openquestion of [11℄ whether MQI 
an be approximated with a fa
tor at most n oreven with a 
onstant fa
tor. The parameterized 
omplexity [7℄ ofMQI, however,so far, has apparently been negle
ted|we 
lose this gap here. Assuming thatthe number k of \wrong" quartet topologies is small in 
omparison with thetotal number of given quartet topologies, we show that MQI is �xed parametertra
table; that is, MQI 
an be solved exa
tly in worst 
ase time O(4kn + n4).Observe that the input size is O(n4). It is worth noting here that the variant ofMQI where the set QS is not required to 
ontain a topology for every quartet isNP-
omplete, even if k = 0 [16℄. Hen
e, this ex
ludes parameterized 
omplexitystudies and also implies inapproximability (with any fa
tor).To develop our algorithm, we exhibit some ni
e 
ombinatorial propertiesof MQI. For instan
e, we point out that \global 
on
i
ts" due to erroneousquartet topologies 
an be redu
ed to \lo
al 
on
i
ts." The basis for this was laidby Bandelt and Dress [2℄. This is the basi
 observation in order to show �xedparameter tra
tability of MQI. Our approa
h makes it possible to 
onstru
tall evolutionary trees that 
an be (uniquely) obtained from the given input by
hanging at most k quartet topologies. This puts the user of the algorithm inthe position to pi
k (e.g., based on additional biologi
al knowledge) the probablybest, most reasonable solution or to 
onstru
t a 
onsensus tree from all solutions.Moreover, our method also generalizes to weighted quartets.We performed several experiments on arti�
ial and real (fungi) data and,thereby, showed that our algorithm (due to several tuning tri
ks) in pra
ti
e runsmu
h faster than its theoreti
al (worst 
ase) analysis predi
ts. For instan
e, witha small k (e.g., k = 100), we 
an solve relatively large (n = 50 taxa) instan
esoptimally in around 40 minutes on a LINUX PC with a Pentium III 750 MHzpro
essor and 192 MB main memory.A full version (
ontaining all proofs) is available [10℄.2 Note that given n spe
ies, there are �n4� = O(n4) 
orresponding quartet topologies.
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2 PreliminariesMinimum quartet in
onsisten
y. In order to �nd the \best" binary tree fora given set of quartet topologies, we 
an ask for a tree that violates a minimumnumber of topologies. In 
ase we are given exa
tly one quartet topology forevery set of four taxa, this question gives the MQI problem. If there is nota quartet topology for ne
essarily every set of four taxa, Ben-Dor et al. [3℄propose two solutions, namely, a heuristi
 approa
h and an exa
t algorithm. Theheuristi
 solution is based on semide�nite programming and does not guaranteeto produ
e the optimal solution, but has a polynomial running time. The exa
talgorithm uses dynami
 programming for �nding the optimal solution and hasexponential running time, namely, O(m3n), where n is the number of spe
iesand m is the number of given quartet topologies. Note that Ben-Dor et al.run all their experiments on MQI instan
es, i.e., there was exa
tly one quartettopology for every set of four taxa. In that 
ase, we havem = O(n4). The memoryrequirement of their exa
t solution is �(2n). A

ording to Jiang et al. [11℄ thereis a fa
tor n2-approximation, and, at the same time, they asked about betterapproximation results. Note that the 
omplement problem of MQI, where onetries to maximize jQT \ Qj (QT being the set of quartet topologies indu
ed bya tree T ), possesses a polynomial time approximation s
heme [12℄.Some notation. Assume that we are given a set of n taxa S. For a quartetfa; b; 
; dg � S, we refer to its possible quartet topologies by [abj
d℄, [a
jbd℄, and[adjb
℄. These are the only possible topologies up to isomorphism. A set of quartettopologies is 
omplete if it 
ontains exa
tly one topology for every quartet of S.A 
omplete set of quartet topologies over S we denote by QS. A set of quartettopologies Q is tree-
onsistent [2℄ if there exists a tree T su
h that for the set QTof quartet topologies indu
ed by T , we have Q � QT . Set Q is tree-like [2℄ if thereexists a tree with Q = QT . Sin
e an evolutionary tree is uniquely 
hara
terizedby the topologies for all its quartets [5℄, a 
omplete set of topologies is tree-
onsistent i� it is tree-like. A set of topologies has a \
on
i
t" whenever it is nottree-
onsistent. We will 
all a 
on
i
t \global" when a 
omplete set of topologiesis not tree-
onsistent. We 
all it \lo
al" when a size three set of topologies, whi
hne
essarily is in
omplete, is not tree-
onsistent.3 Global 
on
i
ts are lo
alGiven a 
omplete set of quartet topologies whi
h is not tree-
onsistent, the resultsof Bandelt and Dress [2℄ imply that there already is a subset of only three quartettopologies whi
h is not tree-
onsistent. This is the key to developing a �xedparameter solution for the problem: It is suÆ
ient to examine the size threesets of quartet topologies and to re
ursively bran
h on those sets whi
h are nottree-
onsistent, as will be explained in Se
tion 5.Proposition 1 (Proposition 2 in [2℄) Given a set of taxa S and a 
omplete setof quartet topologies QS over these taxa, QS is tree-like i� the following so-
alled
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substitution property holds for every �ve distin
t taxa a; b; 
; d; e 2 S:[abj
d℄ 2 QS implies [abj
e℄ 2 QS or [aej
d℄ 2 QS.In the following, we show that in Proposition 1, we 
an repla
e the substitu-tion property introdu
ed by Bandelt and Dress with the more 
ommon termof tree-
onsisten
y. This is be
ause, for an in
omplete set of only three topolo-gies, the substitution property is tightly 
onne
ted to the tree-
onsisten
y of thetopologies. We will state this in the following te
hni
al Lemmas 1 and 2 (proofsomitted, see [10℄) and later use it to give, in Theorem 1, another interpretationof Proposition 1.Lemma 1 Three topologies involving more than �ve taxa are tree-
onsistent.When sear
hing for lo
al 
on
i
ts, Lemma 1 makes it possible to fo
us on the
ase of three topologies involving only �ve taxa. If the substitution property, asgiven in Proposition 1, is not satis�ed, we say that the topologies for the quartetsfa; b; 
; dg, fa; b; 
; eg, and fa; 
; d; eg 
ontradi
t the substitution property.Lemma 2 For a given a set of taxa S, three topologies 
onsisting of taxa from Sare tree-
onsistent i� they do not 
ontradi
t the substitution property.Note that Lemma 2 involving a ne
essarily in
omplete set of three topologies doesnot generalize from size three to an in
omplete set of arbitrary size, as exhibitedin the following example. For taxa fa; b; 
; d; e; fg, 
onsider the in
omplete setof topologies [abj
d℄, [abj
e℄, [b
jde℄, [
djef ℄, and [af jde℄. Without going into thedetails, we only state here that these topologies are not tree-
onsistent, althoughthere are no three topologies whi
h 
ontradi
t the substitution property.Theorem 1 now will make it 
learer that \global" tree-
onsisten
y of a 
om-plete set of topologies re
e
ts in \lo
al" tree-
onsisten
y of every three topologiestaken from this set.Theorem 1 Given a set of taxa S and a 
omplete set of quartet topologies QSover S, QS is tree-like (and, thus, tree-
onsistent) i� every set of three topologiesfrom QS is tree-
onsistent.Proof. Due to Lemma 2 we may repla
e the substitution property in Proposi-tion 1 with tree 
onstisten
y. This gives the result. utWhen we have a 
omplete set of topologies QS for a set of taxa S, we do notne
essarily know whether the set is tree-like or not. If it is not, we 
an, a

ordingto Theorem 1, tra
k down a subset of three topologies that is not tree-
onsistent.Our goal will be to dete
t all these lo
al 
on
i
ts. This will be the prepro
essingstage of the algorithm that will be des
ribed in Se
tion 5, in order to (try to)\repair" the 
on
i
ts in a su

eeding stage of the algorithm. We 
an �nd all theselo
al 
on
i
ts in time O(n5) as follows. Sin
e, following Lemma 1, only threetopologies involving �ve taxa 
an form a lo
al 
on
i
t, it suÆ
es to 
onsider allsize �ve sets of taxa fa; b; 
; d; eg � S. There are �ve quartets over this size �ve
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set of taxa, namely, fa; b; 
; dg, fa; b; 
; eg, fa; b; d; eg, fa; 
; d; eg, and fb; 
; d; eg.For the topologies of these quartets, we 
an test, in 
onstant time, whether thereare three among them that are not tree-
onsistent. Doing so for every size �veset, we will, if QS is not tree-
onsistent, 
ertainly obtain a size three subset ofQS whi
h is not tree-
onsistent. Moreover, from Lemma 2 we know that we �ndall these lo
al 
on
i
ts in time O(n5).We 
an improve this time bound for the prepro
essing stage of the algorithmto be des
ribed in Se
tion 5 with the following result by Bandelt and Dress [2℄.They show that it is suÆ
ient to restri
t our attention to the size �ve sets
ontaining some arbitrarily �xed taxon f .Proposition 2 (Proposition 6 in [2℄) Given a set of taxa S, a 
omplete set ofquartet topologies QS, and some taxon f 2 S, then QS is tree-like i� every size�ve set of taxa whi
h 
ontains f satis�es the substitution property.Following Proposition 2, we 
an sele
t some arbitrary f 2 S and examine onlythe size �ve sets involving f . Similar to our pro
edure des
ribed above, we 
on-sider every su
h size �ve set 
ontaining f separately. Among the topologies overthis size �ve set, we sear
h the size three sets whi
h are not tree-
onsistent. If theset of quartet topologies QS is not tree-
onsistent, we will �nd a size three setof quartet topologies whi
h is not tree-
onsistent. Finding these lo
al 
on
i
tswhi
h involve f 
an be done in time O(n4).4 Combinatorial 
hara
terization of lo
al 
on
i
tsGiven three topologies, we need to de
ide whether they are tree-
onsistent ornot. Dire
tly using the de�nition of tree-
onsisten
y turns out to be a ratherte
hni
al, troublesome task, sin
e we have to reason whether or not a tree topol-ogy exists that indu
es the topologies. Similarly, it 
an be diÆ
ult to test, for thetopologies, whether or not they 
ontradi
t the substitution property. To makethings less te
hni
al and easier to grasp, we subsequently give a useful 
ombi-natorial 
hara
terization of lo
al 
on
i
ts, i.e., three topologies whi
h are nottree-
onsistent. Note that in the following de�nition, we distinguish two possibleorientations of a quartet topology [abj
d℄, namely, [abj
d℄, with a; b on its lefthand side and 
; d on its right hand side, and [
djab℄, with the sides inter
hanged.De�nition 1. Given a set of topologies where ea
h of the topologies is assignedan orientation, let l be the number of di�erent taxa o

urring in the left handsides of the topologies and let r be the number of di�erent taxa o

urring in theright hand sides of the topologies. The signature, then, is the pair (l; r) that, overall possible orientations for these topologies, minimizes l.Theorem 2 Three quartet topologies are not tree-
onsistent i� they involve �vetaxa and their signature is (3; 4) or (4; 4).
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ab 
deab 
de (b)(a)Fig. 1. Possible trees for [abj
d℄ and taxon e in the proof of Theorem 2.Proof. ()) We show that, given three topologies t1, t2, and t3 whi
h are nottree-
onsistent, they involve �ve taxa and have signature (3; 4) or (4; 4). FromLemma 2, we know that three topologies are not tree-
onsistent i� they 
on-tradi
t the substitution property. To re
all, three topologies 
ontradi
t the sub-stitution property if, for one of these topologies, w.l.o.g., t1 = [abj
d℄, neitherthe topology t2 for quartet fa; b; 
; eg is [abj
e℄ nor the topology t3 for quartetfa; 
; d; eg is [aej
d℄. Therefore, the topology t2 is either [a
jbe℄ or [aejb
℄, andthe topology t3 is either [a
jde℄ or [adj
e℄. By exhaustively 
he
king the possible
ombinations, we 
an �nd that the topologies involve �ve taxa and their signa-ture is (3; 4) (e.g., for t2 = [a
jbe℄ and t3 = [a
jde℄) or (4; 4) (e.g., for t2 = [a
jbe℄and t3 = [adj
e℄).(() We are given three topologies, t1, t2, and t3, involving �ve taxa andhaving signature (3; 4) or (4; 4). Assume that they are tree-
onsistent. Showingthat this implies signature (2; 3) or (3; 3), we prove that the assumption is wrong.For tree-
onsistent t1, t2, and t3, we 
an �nd a tree indu
ing them. With, w.l.o.g.,taxa fa; b; 
; d; eg and t1 = [abj
d℄, we mainly have two possibilities: we 
anatta
h the leaf e on the middle edge of topology t1, as shown in Figure 1(a), orwe 
an atta
h e on one of the four side bran
hes of t1, as exemplarily shown inFigure 1(b). Considering the sets of quartet topologies indu
ed by these trees, we�nd, in ea
h 
ase, that the set has signature (3; 3). For instan
e, the topologiesindu
ed by the tree in Figure 1(a) are, besides t1, [abj
e℄, [abjde℄, [aej
d℄, and[bej
d℄. Three topologies sele
ted from these have signature (3; 3) (e.g., [abj
d℄,[abj
e℄, and [aej
d℄) or (2; 3) (e.g., [abj
d℄, [abj
e℄, and [abjde℄). utUsing Theorem 2, we 
an determine whether three topologies are 
on
i
ting bysimply 
ounting the involved taxa and 
omputing their signature.5 Fixed parameter algorithm for MQIIn this se
tion, we present a re
ursive algorithm solvingMQI with parameter k.Before 
alling the re
ursive part for the �rst time, one has to build the list of sizethree sets of quartets whose topologies are not tree-
onsistent. The preparationof this 
on
i
t list is explained in Se
tion 3. After that, we 
all the re
ursivepro
edure of the algorithm with argument k.
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The re
ursive pro
edure sele
ts a lo
al 
on
i
t to bran
h on from the 
on
i
tlist. This bran
hing is done by 
hanging one topology from the sele
ted lo
al
on
i
t, updating the 
on
i
t list, and 
alling the re
ursive pro
edure with ar-gument k�1 on the thereby 
reated sub
ases. We will later explain how to sele
tand 
hange the topologies when bran
hing. After a topology t has 
hanged, thealgorithm updates the 
on
i
t list as follows: It (1) removes the size three setsof quartets in the list whose topologies are now tree-
onsistent, and (2) addsthe size three sets of quartets not in the list whose topologies now form a lo
al
on
i
t.The re
ursion stops if no 
on
i
ts are left in the 
on
i
t list (we have found asolution), or if k = 0 (in 
ase the 
on
i
t list is not empty, we did not �nd a so-lution in this bran
h of the sear
h tree). When a solution is found, the algorithmoutputs the 
urrent set of topologies, i.e., a 
omplete set of quartet topologiesthat is tree-like and that 
an be obtained by altering at most k topologies in thegiven set of topologies. From this tree-like set of quartet topologies, it is possibleto derive the evolutionary tree in time O(n4) [4℄. Thus s
anning the whole sear
htree, we �nd all solutions that we 
an obtain by altering at most k topologies.Running time. For establishing an upper bound on the running time, we 
on-sider the prepro
essing, the update pro
edure, and the size of the sear
h tree.The prepro
essing 
an be done in time O(n4), as explained in Se
tion 3.Updating the 
on
i
t list 
an be done in time O(n): Following Lemma 1,lo
al 
on
i
ts 
an only o

ur among three topologies 
onsisting of no more than�ve taxa. Therefore, having 
hanged the topology of one quartet fa; b; 
; dg, weonly have to examine the \neighborhood" of the quartet, i.e., those sets of �vetaxa 
ontaining a; b; 
; d. For every su
h set of �ve taxa, it 
an be examined in
onstant time whether for three topologies over the �ve taxa, a new 
on
i
temerged, or whether an existing 
on
i
t has been resolved. Given taxa a; b; 
; d,we have n � 4 
hoi
es for a �fth taxon. Thus, O(n) is an upper bound for theupdate pro
edure.3Now, we 
onsider the sear
h tree size. By a 
areful sele
tion of sub
ases tobran
h into, we 
an �nd a way to make at most four re
ursive 
alls on an arbi-trarily sele
ted lo
al 
on
i
t, i.e., for every three topologies whi
h are not tree-
onsistent. Let t1, t2, and t3 be three topologies whi
h are not tree-
onsistent,and let, w.l.o.g., t1 = [abj
d℄. Following Lemma 1, the topologies involve only oneadditional taxon, say e. Following Lemma 2, t1; t2; t3 
ontradi
t the substitutionproperty. Given t1 = [abj
d℄, the substitution property requires topology [abj
e℄or topology [aej
d℄. Therefore, we 
an, w.l.o.g., assume the following setting forthree quartets 
ontradi
ting the substitution property: Topology t1 = [abj
d℄,topology t2 is the topology for quartet fa; b; 
; eg di�erent from [abj
e℄, andtopology t3 is a topology for quartet fa; 
; d; eg di�erent from [aej
d℄. In order3 In fa
t, as explained in Se
tion 3, we only 
onsider sets of �ve spe
ies 
ontaininga designated taxon f . Therefore, if we 
hange the topology of a quartet fa; b; 
; dgwhi
h does not 
ontain the designated taxon f , then we only have to 
onsider oneset of �ve topologies, namely, fa; b; 
; d; fg. In this spe
ial 
ase, the update pro
edure
an be done in time O(1).
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to 
hange the three topologies to satisfy the substitution property, we have thefollowing possibilities. We 
an 
hange t1; either (1) we 
hange t1 to [a
jbd℄, or (2)we 
hange t1 to [adjb
℄. Otherwise, we 
an assume that t1 is not 
hanged. Then,we have to (3) 
hange t2 to [abj
e℄ or (4) 
hange t3 to [aej
d℄, be
ause these arethe only remaining possibilities to satisfy the substitution property. Sin
e theheight of the sear
h tree is at most k, the pre
eding 
onsiderations justify anupper bound of 4k on the exponential growth and yield the following theorem,whi
h summarizes our �ndings.Theorem 3 The MQI problem 
an be solved in time O(4k � n+ n4).Note that this running time is not only true for the algorithm reporting onesolution, but also for reporting all evolutionary trees satisfying the requirement.Our algorithm has O(kn4) memory requirement, where the input size is alreadyO(n4). The 
orre
tness of the algorithm follows easily from Theorem 1.6 Improving the running time in pra
ti
eBesides improving the worst 
ase bounds on the algorithm's running time, we
an also extend the algorithm in order to improve the running time in pra
ti
ewithout a�e
ting the upper bounds. In this se
tion, we 
olle
t some ideas forsu
h heuristi
 improvements.Fixing topologies. It does not make sense to 
hange a topology whi
h, at someprevious level of re
ursion, has been altered, or for whi
h we expli
itly de
idednot to alter it. If we de
ide not to alter a topology in a later stage of re
ursion,we 
all this �xing the topology. This avoids redundant bran
hings in the sear
htree.For
ing topologies to 
hange. It might be possible to identify topologieswhi
h ne
essarily have to be altered in order to �nd a solution. We 
all thisfor
ing a topology to 
hange. The ideas des
ribed here are similar to those usedin the so-
alled redu
tion to problem kernel for the 3-Hitting Set problem [13℄.Lemma 3 Consider an instan
e of the MQI problem in whi
h quartet q hastopology t. If there are more than 3k distin
t lo
al 
on
i
ts whi
h 
ontain t then,in a solution for this instan
e, the topology for q is di�erent from t.Proof. In Se
tion 3, we showed that three topologies only 
an form a lo
al 
on-
i
t if there are not more than �ve taxa o

urring in them (see Lemma 1).For �ve taxa, there are �ve quartets 
onsisting of these taxa, e.g., for taxafa; b; 
; d; eg the quartets are fa; b; 
; dg, fa; b; 
; eg, fa; b; d; eg, fa; 
; d; eg, andfb; 
; d; eg. Therefore, when given two quartet topologies t1 and t2, we make thefollowing observations. If there are more than �ve taxa o

urring in t1 and t2,they 
annot form a 
on
i
t with a third topology. If there are exa
tly �ve taxao

urring in t1 and t2, then there are �ve quartets 
onsisting of these �ve taxa,two of whi
h are the quartets for t1 and t2. The remaining three topologies arethe only possibilities for a topology t3 that 
ould form a 
on
i
t with t1 and t2.
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Now, 
onsider the situation in whi
h, for a quartet topology t, we have morethan 3k distin
t lo
al 
on
i
ts whi
h 
ontain t. From the pre
eding dis
ussion,we know that for any t0, there are at most three topologies su
h that t and t0
an form a 
on
i
t with it. Consequently, there must be more than k distin
ttopologies t0 that o

ur in a lo
al 
on
i
t with t. We show by 
ontradi
tionthat we have to alter topology t to �nd a solution. Assume that we 
an �nd asolution while not altering t. By 
hanging a topology t0, we 
an 
over at mostthree 
on
i
ts, sin
e there are at most three lo
al 
on
i
ts 
ontaining both tand t0. Therefore, by 
hanging k topologies, we 
an resolve at most 3k lo
al
on
i
ts. This 
ontradi
ts our assumption and shows that we have to alter t to�nd a solution. utRe
ognizing hopeless situations. Now, we des
ribe situations in whi
h, atsome level in the sear
h tree when we are allowed to alter at most k topologies,we 
an re
ognize that we 
annot �nd a solution. Thus, we 
an \
ut o�," i.e.,omit, 
omplete subtrees of the sear
h tree.Having a lo
al 
on
i
t 
onsisting only of �xed topologies, we obviously 
annotresolve this 
on
i
t while not 
hanging one of the �xed topologies. As anotherobservation, we know that for a solution, we have to 
hange the for
ed topologies.If after identifying these for
ed topologies, there are more than k of them, it isobvious that a solution is not possible|already by 
hanging these topologies,we would 
hange more topologies than we are allowed to.The following two lemmas 
ontain more involved observations. Their proofsuse similar ideas as used in the proof of Lemma 3 (see [10℄). If a lo
al 
on
i
tdoes not 
ontain a topology whi
h is for
ed to 
hange, then we 
all it an unfor
edlo
al 
on
i
t.Lemma 4 Let us have an instan
e of the MQI problem in whi
h we have iden-ti�ed p 
on
i
ts whi
h are for
ed to 
hange. If the number of unfor
ed lo
al
on
i
ts is greater than 3(k � p)k, then the instan
e has no solution.Lemma 5 An instan
e of the MQI problem in whi
h the number of lo
al 
on-
i
ts is greater than 6(n� 4)k has no solution.Clever bran
hing. Applying the rules des
ribed above will also signi�
antlyimprove our situation when bran
hing. For the general bran
hing situation ona lo
al 
on
i
t, we have shown in Se
tion 5 that it is suÆ
ient to bran
h intofour sub
ases. Regarding topologies for
ed to 
hange, we 
an, however, redu
ethe number of sub
ases. When we have identi�ed a topology t whi
h is for
edto 
hange, it is suÆ
ient to bran
h into two sub
ases: one for ea
h alternativetopology of t. Regarding �xed topologies, we 
an take advantage of lo
al 
on
i
tswhi
h 
ontain �xed topologies. Having a lo
al 
on
i
t with one or two �xedtopologies, we omit the sub
ases whi
h 
hange a �xed topology. This will redu
ethe number of sub
ases to three, two, or even one sub
ase.Prepro
essing by the Q�-method. The algorithmi
 improvements des
ribedabove do not sa
ri�
e the guarantee to �nd the optimal solutions. Using theseimprovements, we will �nd every solution that we would �nd without them. This
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is not true for the following idea. We propose to use the Q�-method des
ribedby Berry and Gas
uel [4℄ as a prepro
essing for our algorithm. The Q�-methodprodu
es the maximum subset of the given quartet topologies that is tree-like.In the 
ombined use with our algorithm, we �x these quartet topologies fromthe beginning. Therefore, our algorithm will 
ompute the minimum number ofquartet topologies we have to 
hange in order to obtain a tree-like set of topolo-gies that 
ontains the topologies �xed by the Q�-method. The tree we obtainwill be a re�nement of the tree reported by the Q�-method whi
h may 
ontainunresolved bran
hes. Thus, we 
annot guarantee that the reported tree is theoptimal solution for the MQI problem. On real data, however, it is the opti-mal tree with high 
ertainty: Suppose it is not. Then there are four taxa a,b,
,and d that are arranged in another way by the Q�-method than they would bearranged in the optimal solution for the MQI problem. As we are working on a
omplete set of topologies, this would imply that there are at least n�3 quartetsthat would make the same wrong predi
tion for the arrangement of a; b; 
; d: thequartet fa; b; 
; dg and, for all e 2 S � fa; b; 
; dg, one quartet over fa; b; 
; d; egthat involves e. On real data, this is very unlikely. Our experiments des
ribed inSe
tion 8 support the 
onje
ture that with the prepro
essing by the Q�-method,we �nd every solution that theMQI algorithm would �nd. Moreover, the exper-iments show that this enhan
ement allows us to pro
ess mu
h larger instan
esthan we 
ould without using it.7 Related problemsWe now 
ome to some variants and generalizations of the basi
 MQI problemand their �xed parameter tra
tability. These variations arise in pra
ti
e due tothe fa
t that often quartet inferen
e methods 
annot non-ambiguously predi
t atopology for every quartet. Perhaps the most natural generalization of MQI isto 
onsider weighted quartet topologies.Weighted MQI. Weights arise sin
e a quartet inferen
e method 
an predi
tthe topology for a quartet with more or less 
ertainty. Therefore, we 
an assignweights to the quartet topologies re
e
ting the 
ertainty they are predi
ted with.Given a 
omplete set of weighted topologies QS and a positive integer k, wedistinguish two di�erent questions.1. Assume that we are given a 
omplete set of weighted topologies QS , withpositive real weights, and a positive integer k. A binary tree is a 
andidatefor a solution if the set of quartet topologies indu
ed by this tree di�ers fromQS in the topologies for at most k quartets. Can we, among all 
andidatetrees satisfying this property, �nd the one su
h that the topologies in QSwhi
h are not indu
ed by the tree have minimum total weight?The algorithm in Se
tion 5 
an 
ompute all solution trees. So, we 
an, with-out sa
ri�
ing the given time bounds, �nd this tree among the solution treesfor whi
h the \wrong" quartet topologies have minimal total weight.2. Assume that we are given a 
omplete set of weighted topologies QS , ea
htopology having a real weight � 1, and a positive real K. Is there a binary
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tree su
h that the quartet topologies indu
ed by the tree di�er from thegiven topologies only for topologies having total weight less than K?Again, we 
an use the algorithm presented in Se
tion 5. When bran
hinginto di�erent sub
ases, the time analysis of the algorithm relied on the fa
tthat in ea
h sub
ase at least one quartet topology is 
hanged, i.e., added tothe \wrong" topologies. In the 
urrent situation of weighted topologies withweights � 1, ea
h sub
ase 
hanges quartet topologies having a total weightof at least 1. The time analysis of our algorithm is, therefore, still valid andthe time bounds remain the same.Allowing arbitrarily small weights in question 2, the problem 
annot be �xedparameter tra
table, unless P = NP. To see this, take an instan
e of unweightedMQI with parameter k. We 
an turn this instan
e into an instan
e of weightedMQI by assigning all topologies weight 1=k and setting the parameter to 1. A�xed parameter algorithm for the problem with arbitrary weights> 0 would thusgive a polynomial time solution forMQI, whi
h 
ontradi
ts theNP-
ompletenessof MQI unless P = NP. Having, however, weights of size at least � for somepositive real �, the problem is �xed parameter tra
table as we des
ribed here forthe spe
ial 
ase that � = 1 (similar to Weighted VertexCover in [14℄).Underspe
i�ed MQI. Due to la
k of information or due to ambiguous results,a quartet inferen
e method may not be able to 
ompute a topology for everyquartet, so there may be quartets for whi
h no topology is given. Assuming abounded number of quartets with missing topology, we formulate the problem asfollows. Given a set S of taxa, integers k and k0, and a set of topologies QS , su
hthat QS 
ontains quartet topologies for all quartets over S ex
ept for k0 many.Then, we ask whether there is a binary tree su
h that the quartet topologiesindu
ed by the tree di�er from the given topologies only for k topologies.The set of topologies is \underspe
i�ed" by k0 topologies. We 
an solve theproblem as follows. Having three possible topologies for ea
h quartet, we 
an, fora quartet without given topology, bran
h into three sub
ases, one for ea
h of itsthree possible topologies. Having sele
ted a topology for ea
h su
h quartet, werun the algorithm from Se
tion 5. The resulting algorithm has time 
omplexityO(3k0 � 4k � n+ n5) and shows that the problem is �xed parameter tra
table forparameters k and k0. Note that for unbounded k0 this problem is NP-
ompleteeven for k = 0 [16℄ and, therefore, is not �xed parameter tra
table.We only brie
y mention another variant ofMQI, Overspe
i�ed MQI: In thatproblem, we are, 
ompared to MQI, given an additional integer k00 and twotopologies instead of one for k00 many quartets. For these quartets, we are free to
hoose one of the given topologies. In a similar way as for underspe
i�edMQI, we
an show that overspe
i�ed MQI is �xed parameter tra
table for parameters kand k00.8 Experimental evaluationTo investigate the usefulness and pra
ti
al relevan
e of the algorithm for un-weighted MQI, we performed experiments on arti�
ial as well as on real data
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(a) (b)Fig. 2. Comparing running time and sear
h tree size for di�erent values of n and k.from fungi. The implementation of the algorithm was done using the program-ming language C. The algorithm 
ontains the enhan
ements des
ribed in Se
-tion 6. The 
ombined use with the Q�-method was, however, only applied whenpro
essing the fungi data, not when pro
essing the arti�
ial data. The reportedtests were done on a LINUX PC with a Pentium III 750 MHz pro
essor and 192MB main memory.8.1 Arti�
ial dataWe performed experiments on arti�
ially generated data in order to �nd outwhi
h kind of data sets our algorithm 
an be espe
ially useful for. For a givennumber n of taxa and parameter k, we produ
e a data �le as follows. We generatea random evolutionary tree for n taxa and derive the quartet topologies from thattree. Then, we 
hange k distin
t, arbitrarily sele
ted topologies in a randomly
hosen way. This results in an MQI instan
e that 
ertainly 
an be solved withparameter k. For ea
h pair of values for n and k, ten di�erent data sets were
reated. The reported results are the average for test runs on ten data sets.We experimented with di�erent values of n and k. As a measure of perfor-man
e, we use two values: We report the pro
essing time and, sin
e pro
essingtime is heavily in
uen
ed by system 
onditions, e.g., memory a

ess time in 
aseof 
a
he faults, also the sear
h tree size. The sear
h tree size is the number of thesear
h trees nodes, both inner nodes and leaves, and it re
e
ts the exponentialgrowth of the algorithm's running time.Figure 2(a) gives a table of results for di�erent values of n and k. Regardingthe pro
essing time, we note, on the one hand, the in
reasing time for �xed n and
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running time in se
.n no Q� with Q�8 0.46 0.36 (21%)a9 3.41 0.85 (32%)10 35.96 2.68 (38%)11 617.56 4.11 (41%)12 7039.82 5.44 (43%)a Per
entage of quartettopologies �xed by Q�
A. fulvaA. nivalisA. vaginataA. 
e
iliaeA. 
aesareaA. longistriataA. in
arnatifoliaA. miraA. gemmataA. pantherinaA. mus
aria
Lima
ella gliodermaA. 
larisquamosaA. volvataA. avellaneosquamosaA. 
itrinaA. ex
elsaA. phalloidesA. subjunquilleaA. fuligineaA. japoni
aA. solitaria

VaginataeCaesareaeAmanitaLepidellaPhalloideaeValidae Amidella

Amanita
Lepidella

(a) (b)Fig. 3. (a) Speed-up when using Q� prepro
essing. (b) Optimal tree found for a setof 21 Amanita spe
ies and one outgroup taxon; indi
ated is the grouping of Amanitaspe
ies into 7 se
tions and 2 subgenera.growing k. On the other hand, we observe that for moderate values of k, we 
anpro
ess large instan
es of the problem, e.g., n = 50 and k = 100 in 40 minutes.For 
omparison of the algorithm's performan
e, 
onsider the results reportedby Ben-Dor et al. [3℄, who solve MQI instan
es also giving guaranteed optimalresults. They only report about pro
essing up to 20 taxa and list, admittedlyfor a high number of erroneous topologies, a running time of 128 hours for this
ase (on a SUN Ultra-4 with 300 MHz).In Figure 2(b) we 
ompare, on a logarithmi
 s
ale, the theoreti
al upperbound of 4k to the real size of the sear
h tree. For ea
h �xed number of taxa n,we give a graph displaying the growth of sear
h tree size for in
reasing k. Thesear
h trees are, by far, smaller than the 4k bound. This is mainly due to thepra
ti
al improvements of the algorithm (see Se
tion 6). We also note that forequal value of k, a higher number n of taxa often results in a smaller sear
h tree.8.2 Real dataUsing our algorithm, we analyzed the evolutionary relationships of spe
ies fromthe mushroom genus Amanita, a group that in
ludes well-known spe
ies like theFly Agari
 and the Death Cap. The underlying data are an alignment of nu
learDNA sequen
es 
oding for the D1/D2 region of the ribosomal large subunit(alignment length 576) from Amanita spe
ies and one outgroup taxon, as usedby Wei� et al. [18℄. We inferred the quartet topologies by (1) using dnadistfrom the Phylip pa
kage [9℄ to 
ompute pairwise distan
es with the maximumlikelihood metri
, and (2) using distquart from the Phyloquart pa
kage [4℄ toinfer quartet topologies based on the distan
es.The analysis was done by a prepro
essing of the data using the Q�-method,also taken from the Phyloquart pa
kage. Experiments on small instan
es, e.g.,
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10 taxa, show that all solutions we �nd without using the Q�-method are alsofound when using it. Using the Q�-method, however, results in a signi�
antspeed-up of the pro
essing. Figure 3(a) shows this impa
t for small numbersof Amanita spe
ies. Note, however, that the speed-up heavily depends on thedata. In Figure 3(a) and in the following, we negle
t the time needed for theprepro
essing by the Q�-method, whi
h is, e.g., 0:11 se
onds for n = 12.We pro
essed a set of n = 22 taxa in 35 minutes. The resulting tree wasrooted using the outgroup taxon Lima
ella glioderma and is displayed in Fig-ure 3(b). We found the best solution for k = 979 for the given 7315 quartettopologies. The Q�-method had �xed 41 per
ent of the quartet topologies in ad-van
e. Considering the tree, the grouping of taxa is 
onsistent with the groupinginto seven se
tions supported by Wei� et al. [18℄, who used the distan
e methodneighbor joining, heuristi
 parsimony methods, and maximum likelihood estima-tions. Parti
ularily, our grouping is nearly identi
al to the topology revealed byWei� et al. using maximum likelihood estimation. This topology is well 
ompati-ble with 
lassi�
ation 
on
epts based on morphologi
al 
hara
ters, e.g., the sistergroup relationship of se
tions Vaginatae and Caesareae, and the monophyly ofsubgenus Amanita.One might hope that quality of quartet inferen
e te
hniques will improve inthe future. This would lead to instan
es requiring smaller values of k.9 Con
lusionWe showed that the Minimum Quartet In
onsisten
y problem 
an be solved inworst 
ase time O(4kn+ n4) when parameter k is the number of faulty quartettopologies. This means that the problem is �xed parameter tra
table. Severalideas for tuning the algorithm show that the pra
ti
al performan
e of the al-gorithm is mu
h better that the theoreti
al bound given above. This is 
learlyexpressed by our experimental results. Note that there is an ongoing dis
ussionabout the usefulness of quartet methods: St. John et al. [15℄ give a rather 
rit-i
al exposition of the pra
ti
al performan
e of quartet methods (in parti
ular,quartet puzzling) in 
omparison with the neighbor joining method, whi
h is inopposition to results reported by Strimmer and v. Haeseler [17℄.Con
erning future work, we want to extend our experiments to weightedquartet topologies and to other data. Also, the fa
t that we 
an obtain all op-timal and near-optimal solutions and the usefulness of this deserves further in-vestigation. From a parameterized 
omplexity point of view, it remains an openquestion to �nd a so-
alled redu
tion to problem kernel (see [1, 7, 8℄ for details).The further redu
tion of the tree size 
on
erning theoreti
al, as well as experi-mental bounds, is a worthwhile future 
hallenge.A
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