
Broadcast Domination
with flexible powers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Informatiker

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Fakultät für Mathematik und Informatik

eingereicht von Michael Schnupp

geb. am 17.03.1978 in Werdau

Betreuer: Jiong Guo

Prof. Dr. Rolf Niedermeier

Jena, 28.04.2006

2

Zusammenfassung

In der Graphentheorie sind Dominierungsprobleme eine wichtige Gruppe von
Problemen. Das wohl bekannteste und meist untersuchte Problem aus dieser
Gruppe ist Dominating Set. Auch Probleme wie Roman Domination

und Broadcast Domination sind bekannte Dominierungsprobleme, welche
alle eine gewisse Ähnlichkeit besitzen. Bei allen diesen Problemen müssen
die Knoten eines Graphens dominiert werden. Um dies zu erreichen, werden
Knoten aus dem Graphen ausgewählt und diesen eine gewisse ,,Dominierungs-
stärke” zugewiesen.

In dieser Arbeit werden wir das Problem General Broadcast Domination

vorstellen. Unter anderem ergeben sich dann die oben genannten Probleme als
Spezialfälle dieses Problems, indem verschiedene Dominierungsstärken zuge-
lassen werden und diesen Stärken verschiedene Kostenfunktionen zugeordnet
werden.

Wir werden danach zeigen, dass alle so entstehenden Probleme auf allgemeinen
Graphen NP-vollständig sind, falls die zugelassene Dominierungsstärke nach
oben beschränkt ist. Dies gilt sogar weiterhin, falls der Eingabegraph planar,
bipartit oder chordal ist. Weiterhin werden wir für diese Art Probleme einen
Algorithmus angeben, welcher auf Graphen mit beschränkter Baumweite in
polynomieller Zeit eine Lösung berechnet.

Zuletzt werden wir zeigen, dass, wenn wir beliebig große Dominierungsstärken
zulassen, einige Probleme selbst auf allgemeinen Graphen effizient lösbar sind.
Wir werden Verfahren skizzieren, die bei der Lösung dieser Probleme behilflich
sind und offene Probleme vorstellen, bei denen diese Verfahren versagen.

4

Abstract

In this thesis we examine problems similar to Dominating Set and Broad-

cast Domination, which ask to dominate a graph by assigning different pow-
ers to some vertices of the graph. We will introduce a new problem called Gen-

eral Broadcast Domination and show that Dominating Set and Broad-

cast Domination are among others special cases of General Broadcast

Domination.

We will prove that all these problems are NP-complete on general graphs and
even on planar, bipartite, and chordal graphs, if there is an upper bound for
the allowed power. We further give a polynomial time algorithm which solves
all those problems for graphs with bounded treewidth.

At the end we will show how the situation changes, if arbitrary large powers
are allowed. We show ways to solve some of these problems efficiently and give
examples of similar problems with still unknown complexity.

Contents

1 Introduction 8

2 Preliminaries 10

2.1 Notation . 10

2.2 Definition of some problems . 11

2.3 Graph classes . 13

2.4 Tree Decomposition . 14

2.5 Handling of NP-complete problems 16

3 General Broadcast Domination 17

3.1 Motivation . 17

3.2 Formal definition . 19

3.3 Special cases . 20

4 NP-completeness for problems with bounded power set 23

4.1 NP-completeness of Roman Domination 24

4.2 NP-completeness of (a, b)-Domination 28

4.3 NP-completeness of r-Dominating Set (and other problems) . 30

5 Algorithms for problems with bounded power set 32

5.1 Induced power . 32

5.2 An algorithm for trees . 33

5.2.1 Notation . 33

5.2.2 Algorithm . 35

5.3 An algorithm for graphs with bounded treewidth 38

5.3.1 Preconditions . 38

5.3.2 The idea . 38

5.3.3 The algorithm . 41

5.3.4 Time complexity . 47

6

Contents

6 Problems with unbounded power set 49
6.1 Cases with an efficient solution 49
6.2 Cases with a radial solution . 51
6.3 Cases with a linear solution . 52
6.4 Cases with unknown complexity 52

7 Conclusion 54

Bibliography 55

7

1 Introduction

Algorithmic graph theory is a very important area of theoretical computer
science ([5], [8]). Many real world problems can be modeled as graph problems,
since many scenarios can be represented by graphs. A graph consists of a set
V of vertices and a set E of edges between these vertices. For example a road
map consists of cities and roads between them, or a social network may consist
of persons and relations between them. Taking the latter example, we can
use graphs as the Figure 1.1 to illustrate social networks by letting the graph
vertices represent different people and edges mean that these people know each
other.

AB

C

Figure 1.1: A graph representing a social network. The vertices (gray circles)
are people which know each other iff there is an edge (line) between
them.

With this intuitive model one can ask different questions. One question could
be: How many people do we need to know, such that we know everyone either
directly or indirectly via a second person?

Looking at the figure we can find knowing A and B is already enough. In this
case it is quite simple to see the solution, but given a more complicated graph
we usually cannot see the solution at once. We can even show that we cannot
hope for an efficient solving strategy for this problem, since this problem is
equivalent to a well-known problem called Dominating Set, which is known
to be NP-complete [12], which means we cannot hope for an efficient solution
strategy.

8

We can then get similar derived problems by changing the problem a little bit:
Maybe we are already pleased if we know everyone “over two corners”, i.e., we
always know someone who knows someone knowing that person. Hence we can
reach all people within distance two from our friends. In the given example in
Figure 1.1 we see that we need only C in that case.

But if we want, for example, to pass a message to everyone it may be much
more time-consuming for a person to see the neighbors of the neighbors, too.
Therefore we might be tempted to give those cases different costs and trying
to minimize the total amount. And there the story goes.

In this thesis we examine a class of problems similar to all those mentioned
above. We are going to define a new class of problems, called General Broad-

cast Domination, which allows different allowed distances, called powers,
and different cost functions and thereby subsumes amongst others the prob-
lems Dominating Set, Roman Domination, and Broadcast Domina-

tion, since they will turn out to be special cases of General Broadcast

Domination. We will examine the complexity of some of these problems and
try to find results which hold for a class of problems as large as possible.

In particular, we will divide all General Broadcast Domination problems
in problems with bounded power and with unbounded power. We are going
to show, that a bounded power will always make the problem NP-complete on
general graphs and some graph classes. We further prove that those problems
can however always be solved efficiently if the input graph has a bounded
treewidth. In the last part we will examine problems with unbounded powers.
Some of these problems can be solved efficiently even on general graphs, but
the complexity of some others is still open.

9

2 Preliminaries

2.1 Notation

Let G = (V,E), E ⊆ {{u, v} | u, v ∈ V } be a graph. We always assume that
graphs are simple (no loops or multiple edges), undirected, unweighted, and
connected. We write V (G) to denote the vertex set V of G and we write E(G)
to denote the edge set E of G. We will refer to Figure 2.1 as an example for
the following definitions.

v1

v2

v3

Figure 2.1: An example graph G for illustrating the definitions.

The distance between two vertices u, v in G, denoted by dG(u, v), is the mini-
mum number of edges on a path between u and v. (We usually drop the index
G writing d(u, v).) The distance between v1 and v3 in Figure 2.1 is therefore
d(v1, v3) = 4.

The eccentricity of a vertex v, denoted by e(v), is the largest distance from v

to any vertex of G. In Figure 2.1, e(v1) = 6, e(v2) = 5, and e(v3) = 4.

The radius of G, denoted by rad(G), is the smallest eccentricity in G, while
the diameter of G, denoted by diam(G), is the largest eccentricity in G. In
Figure 2.1 rad(G) = 4 and diam(G) = 6.

10

2.2 Definition of some problems

A vertex v with e(v) = rad(G) is called a center vertex. Vertex v3 and its two
neighbors are center vertices in the example.

For a vertex set S ∈ V the induced subgraph is G[S] = (S, {{u, v} ∈ E | u, v ∈
S}).

The neighborhood of a vertex v is the set N(v) = {w ∈ V | {v,w} ∈ E}.
Furthermore for a constant k we define Nk(v) = {w ∈ V | d(w, v) ≤ k} and for
a function f : V → N we define Nf (v) = {w ∈ V | d(w, v) ≤ f(v)}.

The neighborhood of a set of vertices is the union of the neighborhoods of the
members.

For a partition V = V1 ⊕ V2 ⊕ V3 ⊕ . . . , it holds
⋃

Vi = V and Vi ∩ Vj = ∅ for
all i 6= j.

The symbol N denotes the natural numbers including zero.

A Pk is a path consisting of k vertices.

Further basics on algorithmic graph theory and the associated notation can be
found in standard literature on graphs [8] and algorithms [7].

2.2 Definition of some problems

In this thesis we will frequently refer to some well-known problems. Many of
these are described in [12]. We give now the formal definitions of the problems
handled in this thesis.

Vertex Cover

INPUT: A graph G = (V,E) and an integer k.
QUESTION: Is there a subset S ⊆ V , |S| ≤ k, such that ∀{u, v} ∈
E : u ∈ S ∨ v ∈ S?

We could also think of every vertex covering the incident edges and all edges
have to be covered.

11

2 Preliminaries

Dominating Set

INPUT: A graph G = (V,E) and an integer k.
QUESTION: Is there a subset S ⊆ V with |V | ≤ k and ∀v ∈ V \ S∃s ∈
S : {v, s} ∈ E?

Alternatively we can say that a vertex in S dominates itself and its neighbors
and it is asked to dominate the whole graph.

Roman Domination

INPUT: A graph G = (V,E) and an integer k.
QUESTION: Is there a set S1 ⊆ V and a set S2 ⊆ V \ S1 with
|S1| + 2|S2| ≤ k and ∀v ∈ V \ S1∃s ∈ S2 : {v, s} ∈ E?

Alternatively we can say that a vertex in S1 dominates itself and a vertex in
S2 dominates itself and each neighbor and it is asked to dominate the whole
graph.

Broadcast Domination

INPUT: A graph G = (V,E) and an integer k.
QUESTION: Is there a function f : V → N so that

∑

v∈V f(v) < k

and every vertex is within distance f(v) from some vertex v?

In this case each vertex v with f(v) > 0 dominates all vertices within distance
f(v) and it is again asked to dominate the whole graph.

For each problem there is also a minimizing version asking for the smallest k

for which the corresponding question is true. In the following we will always
refer to the minimizing version.

12

2.3 Graph classes

2.3 Graph classes

Many problems can be proved to be NP-complete on general graphs, but they
can be solved in polynomial time if the input graph has special properties.
Graphs with special properties can be categorized in different graph classes.
Each class is defined by a set of constraints for the graph. We give a definition
of the classes we are going to use in this thesis.

First we need to introduce two basic definitions: A clique of a graph G = (V,E)
is a subset C ∈ V where every pair of vertices from C is directly connected by
an edge in G. An independent set of a graph is a subset C ∈ V where no pair
of vertices from C is directly connected by an edge in G.

Now we can easily define the needed graph classes. A graph is a planar graph
if it can be embedded in the plane (drawn with points for vertices and curves
for edges) without crossing edges. A graph is a bipartite graph if there is a
partition of its vertex set into two independent sets. A graph is a chordal graph
if every cycle of length at least 4 has a chord. A graph is a split graph if there
is a partition of its vertex set into a clique and an independent set.

Figure 2.2 gives an example of a split and a bipartite graph.

Figure 2.2: A split graph on the left and a bipartite graph on the right. The
clique and the independent sets are marked.

A more detailed survey on graph classes can be found in [5]. A pretty com-
plete overview over literally all the known classes with definitions, relations,
and references to proofs of important properties can be found online at the
“Information System on Graph Class Inclusions”(ISGCI) [4].

Since the properties of some classes restrict those of others, some classes include

13

2 Preliminaries

series parallel

planarbounded treewidth

comparability

bipartite

co−comparability

split

circleAT−free

chordal

interval

k−polygon

cograph

permutation

distance−hereditary

Figure 2.3: Some graph classes and their inclusion. An arrow means that the
first class is a superclass of the second. The gray classes are the
ones on which Dominating Set is known to be NP-complete. Even
many other considered problems will turn out to be NP-complete
on these classes.

others. Figure 2.3 shows some classes and their relationships. If a problem can
be proved to be NP-complete on a class, it will obviously be NP-complete on
any superclass, too. If an algorithm works for a class, it will clearly also work
for each subclass.

2.4 Tree Decomposition

Some graphs have similar properties like trees, but obviously are no trees.
Figure 2.4 shows such a graph. It has many cycles and is obviously no tree,
but nevertheless it looks a bit like a tree, since it is at no place “wider” than
two vertices. Such a graph is said to have a bounded treewidth.

Formally we define the treewidth by a tree decomposition:

A tree decomposition X of G is a pair 〈{Xi | i ∈ V (T)}, T 〉, where each Xi is
a subset of V , called a bag, and T is a tree with elements of V (T) as nodes.
The following three properties must hold:

14

2.4 Tree Decomposition

Figure 2.4: A graph with a treewidth of two. We can cut the graph into two
parts by deleting bags of two vertices.

•
⋃

i∈V (T) Xi = V ,

• for every edge {u, v} ∈ E, there is an i ∈ V (T) such that {u, v} ⊆ Xi,

• for all i, j, k ∈ V (T), if j lies on the path between i and k in T , then
Xi ∩ Xk ⊆ Xj .

The treewidth tw(X) of X is defined to be the size of the largest bag minus
one, i.e.,

tw(X) = max{|Xi| | i ∈ V (T)} − 1

A special kind of tree decomposition we are going to use later is called nice
tree decomposition:

A tree decomposition 〈{Xi | i ∈ V (T)}, T 〉 is called a nice tree decomposition
if the tree T is rooted and the following conditions are satisfied:

• Every node of the tree T has at most two children.

15

2 Preliminaries

• If a node i has two children j and k, then Xi = Xj = Xk (in this case i

is called a JOIN NODE).

• If a node i has one child j, then either
(a) |Xi| = |Xj |+ 1 and Xj (Xi (in this case i is called a INTRODUCE
NODE).
(b) |Xi| = |Xj | − 1 and Xi (Xj (in this case i is called a FORGET
NODE).

Each tree decomposition can easily be transformed into a nice tree decomposition[17].
More about tree decomposition can be found in [1],[3], and [21].

2.5 Handling of NP-complete problems

In this thesis we will most of the time only try decide if there is a polynomial
time algorithm for a given problem or if it is NP-complete. If the problem
turns out to be NP-complete, this means we cannot hope for an polynomial
time algorithm to solve this problem. Every algorithm will have an exponential
running time in the worst case, and it will therefore usually simply last too
long.

If one has to solve such an NP-complete problem anyway there are nevertheless
some approach to solve it. We will in this thesis not handle those approaches,
but will now point out some literature for the interested reader.

One way could be that we actually do not need the very exact solution and a
good approximation is enough. There is much literature on polynomial time
approximation algorithms as [2] and [22].

If we want to compute the exact solution anyhow, there is also the possibility
that we can find a parameter such that the exponential complexity of the
problem can be shifted from the complete input size to the parameter which
may be much smaller. Such a parameter can e.g. be the solution size or the
treewidth of the input graph. More on fixed-parameter algorithms can be found
in [9] and [20].

16

3 General Broadcast Domination

In this chapter we are going to define the General Broadcast Domination

problem, which will be the foundation of this thesis.

3.1 Motivation

Dominating Set [14][15] is considered to be among the most important graph
problems. Herein, one is asked to find a subset D ⊆ V dominating all vertices,
given that each vertex in D dominates itself and its neighbors.

In the literature many domination-like problems have been considered. In
some of these problems new domination rules are added, as e.g. in Power

Dominating set1 [13], where a dominated vertex with all but one neighbors
dominated dominates the remaining neighbor, too. Others add restrictions on
valid solutions, as Connected Dominating Set [23] where the set D has to
induce a connected subgraph of G. A third class of problems results by simply
allowing different powers of the domination. This is the class of problems we
are going to discuss in this thesis.

With the usual domination mechanism a vertex dominates only its direct neigh-
bors. In Figure 3.1 we therefore need three vertices to dominate the whole
graph. The left graph in Figure 3.2 illustrates such a solution. By assigning a
power to each vertex in the domination set, we extend the domination range to
all vertices within a distance at most equal to the given power. In the example
we can now just give the center vertex a power of two and it will dominate the
whole graph as illustrated in the middle graph of Figure 3.2. This new domina-
tion mechanism comes from the problem Broadcast Domination [16] where

1In Power Dominating set the power refers to electrical networks, which suggest special

rules. It is independent of the power we are going to assign to vertices.

17

3 General Broadcast Domination

arbitrary positive powers can be assigned and it is asked to minimize the total
power assigned. This problem of Broadcast Domination may arise if a ra-
dio station wants to reach all cities in a given area and therefore wants to place
broadcast station (with possibly different transmitting power) in some of those
cities. A higher power can reach more cities but has a higher cost, too.

Figure 3.1: A very simple example graph.

There is further a classical problem called Roman Domination [11]. In its
original formulation one is asked to protect the Roman empire by placing roman
legions in different areas of the empire, assuming that a single legion can protect
the region in which it was placed, and a region with two legions can protect
the neighbor regions, too; it can afford sending one legion out without leaving
the region unprotected.

This problem can be seen as being able to assign two different powers. A
power of one enables a vertex to dominate all vertices of distance one, which
are obviously the neighbors, and a power of zero, which dominates all vertices
with distance zero which is only the vertex itself. In this case we can dominate
the example graph by giving the center vertex a power of one while giving the
three still undominated vertices a power of zero. This is shown in the right
graph of Figure 3.2.

In all problems it is asked to find an optimal solution. Therefore we need also
a cost function, which gives the cost of a vertex with power p. In Broadcast

Domination the cost is just the power itself while in Roman Domination

the cost is the number of legions which is one more than the power.

Figure 3.2 shows again the above described solutions. These solutions are
indeed optimal, there is no other solution with a lower cost.

Despite the different solutions, the problems are all quiet similar regarding the
way the domination works. Therefore we are going to define the problem Gen-

18

3.2 Formal definition

1

1 1

1

0

00

2

Figure 3.2: An optimal solution for Dominating Set, Broadcast Domina-

tion and Roman Domination: The vertices containing numbers
form the dominating set. The number itself is the power of that
vertex.

eral Broadcast Domination, as a generalization of the above problems.

3.2 Formal definition

To formally define the problem General Broadcast Domination, we need
the following definitions.

Let G = (V,E) be the graph we want to dominate and P ⊆ N the power
set2, which determines the allowed powers. Whenever we choose a subset
D ⊆ V of dominating vertices and a power function p : D → P , which assigns
each dominating vertex an allowed power, we call the pair (D, p) a partial
domination. A dominating vertex v with power p(v) dominates all vertices up
to distance p(v). A partial domination dominates all vertices v ∈ V which
are dominated by any dominating vertex, i.e., {v | ∃w ∈ D : v ∈ Np(w)}. An
example is shown in Figure 3.3.

In addition, a cost function c : P → N assigns each dominating vertex a cost
that depends on its power. Then the cost of the partial domination is simply
the sum of the costs of the dominating vertices:

c(D, p) =
∑

v∈D

c(p(v))

2Here we really mean a set of different powers, not the set of subsets of a set.

19

3 General Broadcast Domination

0 2

1

Figure 3.3: An example of a partial domination. The numbered vertices are
the dominating vertices. The number itself is the associated power.
Therefore, all gray vertices are dominated.

A partial domination which dominates the whole graph with minimum cost is
called a minimum domination or the solution of the General Broadcast

Domination problem specified by P and c.

The General Broadcast Domination problem is now defined as follows:

INPUT: A power set P and a cost function c. A graph G = (V,E).
QUESTION: What is the cost of a minimum domination?

The problem is similar to Broadcast Domination but we have generalized
it in that we can restrict the allowed powers and use different cost functions.

3.3 Special cases

Using the definition of General Broadcast Domination, we can now define
more special problems GBD(P, c) by simply specifying P and c. This is done
in Table 3.1, which defines well known problems as well as new problems, which
can be seen as generalizations of the known problems.

The parameter r in r-Dominating Set and Restricted Broadcast Dom-

ination is an arbitrary constant. For r = 1 the problems obviously become
equivalent to Dominating Set, therefore r ≥ 2 is the only new case.

It is also easy to see that the cost function should never assign a cost of zero
to any power. Otherwise, we have always a cost-zero-solution. It is also not
helpful to have a not strictly monotonic increasing cost function, since whenever
c(a) ≤ c(b) with b < a power b is never needed. Therefore we will only consider
strictly monotonic increasing cost functions which assign only positive costs.

20

3.3 Special cases

Problem P c(p)

DS (Dominating Set) {1} 1
r-Dominating Set (r ≥ 2) {r} 1
RD (Roman Domination) {0, 1} p + 1
BD (Broadcast Domination) {1, 2, . . . , n} p

RBD (Restricted BD)(r ≥ 2) {1, 2, . . . , r} p

MBD (Modified BD) {0, 1, 2, . . . , n} p + 1
ABD ((a, b)-Domination) {a, . . . , b}, a < b p

Table 3.1: Some problems seen as special cases of General Broadcast Dom-

ination

With P = {1} and c(1) = 1 we end up with Dominating Set, since each
dominating vertex dominates its neighbors and doing so will have the cost
of one, which means that the overall cost will be the number of dominating
vertices.

In the case of Roman Domination a power of zero (corresponding to a single
legion) dominates only the vertex itself and has a cost of one. Whereas a power
of one (corresponding to two legions) has a cost of two while dominating the
neighbor vertices, too.

While in Roman Domination we cannot assign powers greater than one, in
Broadcast Domination any positive power is possible. Since these problems
will turn out to have very different complexities, we define the Restricted

Broadcast Domination problem in the way that we allow arbitrary powers
up to a parameter r. We also define the Modified Broadcast Domination

problem, which is almost the same as Broadcast Domination, but by letting
the cost be one higher than in usual Broadcast Domination. Therefore we
can now allow a power of zero. Because power zero is sometimes not allowed,
we can also consider (a, b)-Domination, where only powers between a and b

are allowed.

Depending on P and c we get pretty different solutions. Figure 3.4 shows
three ways to dominate a path of length nine: We can use three vertices with
power one, one with power four or two with power two. Under the restrictions
of Broadcast Domination clearly the first way is the cheapest, since the
three vertices have cost one each, resulting in a total cost of three while in the
other cases the total cost is four. This totally changes if we assume the rules

21

3 General Broadcast Domination

of Modified Broadcast Domination. Now the cost of each dominating
vertex is one higher than in Broadcast Domination. And so the first and
the third way will have a total cost of six, while the second one only costs five.
When restricting the possible powers, by disallowing powers greater than two
the second way becomes invalid and the others have the same cost.

1 1

4

1

2 2

Figure 3.4: Three possible ways to dominate a path of length nine: three dom-
inating vertices with power one, one with power four or two with
power two.

We see how different values for P and c change the kind of solution. This is the
reason why we might need different strategies to find an appropriate solution.
Indeed we will now see that in some cases there is an efficient algorithm while
other cases are NP-complete.

22

4 NP-completeness for problems with
bounded power set

While some problems can always be solved efficiently, others turn out to be
NP-complete on general graphs. Most of them even stay NP-complete when
restricted to various graph classes.

Table 4.1 gives again the definition of the problems we are dealing with.

Problem P c(p), p ∈ P

Dominating Set {1} 1
r-Dominating Set {r} 1
Roman Domination {0, 1} p + 1
(a, b)-Domination (ABD) {a, . . . , b}, a < b p

Restricted Broadcast Domination {1, 2, . . . , r} p

Table 4.1: Allowed powers and cost function, defining the considered problems.

In this section we will prove NP-completeness of some problems on general
graphs as well as on selected graph classes. We are going to give a reduction
from Dominating Set to r-Dominating Set, from Vertex Cover to Ro-

man Domination and from Roman Domination to (a, b)-Domination. The
complexity results for (a, b)-Domination also hold for Restricted Broad-

cast Domination since it is a special case of (a, b)-Domination namely
(1, r)-Domination.

Table 4.2 gives the complexity results for the problems we are dealing with.

23

4 NP-completeness for problems with bounded power set

Class Recognition VC DS RD ABD

general - NP-c NP-c NP-c NP-c
planar lin NP-c NP-c NP-c NP-c
bipartite lin pol NP-c NP-c NP-c
comparability pol pol NP-c NP-c NP-c
split lin lin NP-c NP-c lin
chordal lin lin NP-c NP-c NP-c

Table 4.2: An overview of some problems and their complexity on some graph
classes. The proofs for recognition (i.e., determining if a given graph
belongs to that graph class,) Vertex Cover and Dominating Set

are given in [4]. The gray entries in RD(Roman Domination) and
ABD((a, b)-Domination) follow from inclusions, while the remain-
ing entries are proved in this chapter.

4.1 NP-completeness of Roman Domination

Roman Domination and many of its properties have been introduced in [6].
The complexity of Roman Domination over some graph classes is studied in
[19] and some parameterized results are presented recently in [11].

The NP-completeness of Roman Domination on the considered classes is
stated in [19], but we did not find formal proofs in any literature. This is
why we show Roman Domination being NP-complete on planar, split, and
bipartite graphs by reducing from Vertex Cover, which is NP-complete even
on planar graphs[12]. The proofs are very similar, therefore we give them
together. Before we begin with the actual reduction, the following definition
and lemma will be useful.

A tent (Figure 4.1) is a complete bipartite graph K2,3, consisting of two base
vertices and three top vertices.

Lemma 1. Every minimum domination (D, p) for Roman Domination on
a tent never contains top vertices, and therefore one of the base vertices in
assigned a power of one.

Proof. Assume there would be a minimum domination (D, p), which does not
assign power one to a base vertex. Then, the top vertices are not dominated by

24

4.1 NP-completeness of Roman Domination

base vertices

top vertices

Figure 4.1: A tent consists of two base vertices and tree top vertices

a neighbor and p has to assign at least power zero to all the three top vertices,
which will result in cost three. This would be more than the cost of two, which
would result by assigning power one to one base vertex. Therefore (D, p) cannot
be a minimum domination which would contradict the assumption.

Theorem 1. Roman Domination is NP-complete on planar, split and bipar-
tite Graphs. There is a reduction from (planar) Vertex Cover.

Figure 4.2: Substituting an edge with three new vertices. We thereby create a
tent.

Proof. Given a graph G = (V,E) we construct a new graph G′ by leaving it
unchanged besides substituting each edge with three new vertices (Figure 4.2).
By doing so we create a tent for each former edge.

For planar graphs we also add the edges from E. (For planar graphs the
resulting graph is still planar.) For split graphs we connect each pair of V by
an edge. (The vertices of V now form a clique, while the added vertices are
clearly an independent set, hence, the graph is a split graph.) For bipartite
graphs we further add a single vertex z and connect it to all the vertices from V

as well as to three more new degree one vertices. (This forces z to dominate the
three vertices as well as all vertices in V and the graph will still be bipartite.)

A small example of the thereby created graphs is given in Figure 4.3.

Now assume we constructed the new graph G′ as described above from the
original graph G. First, it is easy to see, that in the bipartite case, each

25

4 NP-completeness for problems with bounded power set

Figure 4.3: The resulting graphs after applying the described transformation
on a P2. The marked vertices are the ones corresponding to the
original P2. At the left are the planar and the split graph; at the
right is the bipartite graph.

Roman Domination solution gives vertex z a power of one. (Otherwise all
three neighbor vertices of degree one have to be given at least power zero, which
would result in a higher cost than a power one for z.)

We are going to show: Graph G has a Vertex Cover solution of size k iff
graph G′ has a Roman Domination solution of cost 2k, respectively 2k + 2
in the bipartite case. The higher cost of the Roman Domination solution in
the bipartite case comes from vertex z which is needed to dominate all vertices
in V .

First assume graph G has a Vertex Cover solution of size k. Then we get the
Roman Domination solution by simply assigning each vertex of the Vertex

Cover solution a power of one. Since a Vertex Cover solution contains at
least one end vertex for each edge in G, all the top vertices are dominated by
those power one vertices. The second base vertex of each tent is dominated by
the first one or, in the bipartite case, by vertex z.

Now we study a Roman Domination solution (D, p) on Graph G′. Because
of Lemma 1 no top vertex is contained in D and for each tent a base vertex
is assigned power one. This means choosing exactly those power one vertices
(without the z-vertex) will result in a vertex cover of graph G.

Therefore a Vertex Cover solution on G is essentially a Roman Domina-

tion solution on G′ and vice versa.

26

4.1 NP-completeness of Roman Domination

A stronger reduction from Minimum Set Cover for bipartite graphs

A reduction from Vertex Cover is not very strong since Vertex Cover can
for example easily 2-approximated. Therefore we now give a second reduction
from Minimum Set Cover, which is much harder to approximate [10].

Theorem 2. Roman Domination on bipartite graphs is NP-complete. There
is a reduction from Minimum Set Cover.

Proof. Let (C = {S1, S2, . . . , Sm}, k), Si ⊆ U = {u1, u2, . . . , un} be an instance
of Minimum Set Cover.

We now construct a graph G = (V,E) with V = U ′ ∪ C ∪ {z} ∪ H where
U ′ = {u11, u12, u13, u21, u22, u23, . . . , un1, un2, un3} consists of three vertices for
each element in U . (They will be the vertices to be dominated.) Vertex z and
H = {h1, h2, h3} are new help vertices. (They will make sure, the vertices in
C are already dominated.) Now let E = {{z, v} | v ∈ H ∪ C} ∪ {{S, uij} | S ∈
C, ui ∈ S, 1 ≤ j ≤ 3, S ∈ C}. (i.e., we connect H to z, z to C, and C to U ′ if
an element is in the corresponding set.)

Figure 4.4 shows an example of a resulting graph.

a b c

e d

g

f

a b c d e f g

S1

S1

S2

S2

S3

S3

S4

S4

H

C

z

U ′

Figure 4.4: The bipartite graph constructed in the proof.

By adding the three leaves h1, h2, h3 we force power one for z in every optimal
solution of Roman Domination. The vertices from C are also dominated by
vertex z.

27

4 NP-completeness for problems with bounded power set

Hence we only have to dominate the vertices from U ′. Since we have three
vertices for each element from U again any optimal solution will never contain
vertices from U ′. So we have to find a minimum subset of C dominating all
the vertices of U ′ (by letting them have a power of one). This is exactly the
problem Minimum Set Cover.

Each Roman Domination solution therefore implies a Minimum Set Cover

solution by choosing the power one vertices of C, while we can construct a Ro-

man Domination solution from a Minimum Set Cover solution by simply
assigning the corresponding C vertices (as well as vertex z) a power of one.

Clearly, there is a solution of Minimum Set Cover of size k, iff there is a
solution of Roman Domination of cost 2k + 2.

4.2 NP-completeness of (a, b)-Domination

In this section we deal with (a, b)-Domination, a special case of General

Broadcast Domination, which only assigns powers P = {a, . . . , b}, a < b

and costs c(p) = p.

First we need the following definition and lemma.

An (n,m)-spider is a graph consisting of m copies of a path Pn (legs) each
of them with one end vertex connected by an edge to a central vertex, called
head. The other end vertices of the legs we call feet. An example is shown in
Figure 4.5.

legs

head

Figure 4.5: A (3,5)-spider

28

4.2 NP-completeness of (a, b)-Domination

Lemma 2. An optimal (a, b)-Domination solution of a (b−1, b)-spider never
uses a leg vertex as a dominating vertex.

Proof. Assume we are given an (a, b)-Domination solution of a (b−1, b)-spider.
If a single dominating vertex dominates more than one foot of the spider, it
will dominate all feet and thus the whole spider. If this dominating vertex is
a leg vertex, it has to be a neighbor of the head vertex with power b. In this
case we could dominate the spider with lower cost by giving the head vertex
power b − 1, which would contradict the optimality of the solution.

If no two feet are dominated by the same domination vertex, each foot has to
be dominated by its own dominating vertex. Since each dominating vertex has
at least cost 1, the total cost would again be at least b, which would again be
more than giving the head vertex power b − 1.

This lemma will help us constructing a reduction proving the following theo-
rem.

Theorem 3. (a, b)-Domination is NP-complete on planar, bipartite, and
chordal graphs.

Proof. Since a given solution candidate can easily be verified in polynomial
time, (a, b)-Domination is clearly in NP. To show NP-hardness, we give a
reduction from Roman Domination.

Given a Roman Domination instance G = (V,E), we construct an (a, b)-
Domination instance G′ by adding b Pb−1 to each vertex, i.e., for each vertex
v ∈ V we add b new copies of a Pb−1 and connect one end vertex of each path
to v.

We have thereby created in G′ a (b − 1, b)-spider for each vertex it V and we
will show that G has a Roman Domination solution (D, p) of cost s iff G′

has an (a, b)-Domination solution of cost s + (b − 1)|D|.

Given a Roman Domination solution (D, p) we can obviously get an (a, b)-
Domination solution (D, p′) by adding b − 1 to each power, i.e., p′(v) =
p(v) + b − 1 for each v ∈ D.

29

4 NP-completeness for problems with bounded power set

G

G′

Figure 4.6: The original graph G and the graph G′ constructed in the proof.

Given an (a, b)-Domination solution (D, p′), by Lemma 2, set D can not con-
tain any newly added vertices. Since the new vertices have to be dominated,
too, p′ only assigns the powers b and b − 1 and we get a valid Roman Domi-

nation solution (D, p) by letting p(v) = p′(v) − (b − 1).

It is easy to see that the above construction preserves the properties of pla-
nar, bipartite, and chordal graphs. Hence, the NP-completeness of (a, b)-
Domination follows from the NP-completeness of Roman Domination for
these graph classes.

4.3 NP-completeness of r-Dominating Set (and other

problems)

The preceding NP-completeness proof for (a, b)-Domination needs two powers
b and b−1. That is why we defined the problem with a < b disallowing the case
of a = b. But even if we have a problem, which allows only a single power r,
the problem is also NP-complete.

Theorem 4. r-Dominating Set is NP-complete on planar, bipartite, chordal
graphs.

Proof. Again, a solution candidate can easily be verified in polynomial time.
Therefore r-Dominating Set clearly is in NP. To show the hardness we give
a reduction from Dominating Set using the same principle as in the proof of
Theorem 3, constructing a graph G′ by attaching r Pr−1 to each vertex of the
Dominating Set instance G.

30

4.3 NP-completeness of r-Dominating Set (and other problems)

If we have a Dominating Set solution (D, p) we can obviously get an r-
Dominating Set solution (D, p′) by adding r−1 to each power, i.e., p′(v) = r

for each v ∈ D.

Given an r-Dominating Set solution (D′, p′) for G′ we will now build a new
set D which will be a solution of Dominating Set on G. Let v ∈ D′ be a
dominating vertex of the r-Dominating Set solution.

If v ∈ V , then it is the head of a spider and dominates due to power r all
neighbor spiders, too. Therefore we simply choose v in our new dominating
set D. If v 6∈ V , then it can only be a leg vertex next to a head vertex h.
(Otherwise it would dominate only one feet, which cannot be optimal.) In
this case replacing v by h leads to another valid solution, since it dominates
(at least) the same vertices and has the same cost. Therefore we add the
corresponding head vertex h to D. In this way we get a set D from D′ with
|D| = |D′|, leading to the same cost.

Therefore G has a Dominating Set solution of cost x iff G′ has an r-Dominating

Set solution of cost x.

Looking at the above proof we can observe that it also works for problems where
powers < r − 1 are allowed. Therefore we can state the following corollary.

Corollary 1. Each General Broadcast Domination problem with cost
function c(p) = p and restricted power set P (i.e., ∃k∀p∈P : p ≤ k) is NP-
complete on planar, bipartite, chordal graphs.

Proof. Let r be the highest allowed power in P . Depending on whether r−1 ∈
P we use either the proof for Theorem 3 or Theorem 4. Since we always
constructed (r − 1, r)-spiders, smaller powers will never be used. This is why
those proofs still work for problems which allow smaller powers.

31

5 Algorithms for problems with
bounded power set

In chapter 4 we showed that all bounded problems are NP-complete even when
restricted to some graph classes. There is however always an efficient algorithm
when the input graph has a bounded treewidth. We will prove this now by
giving a dynamic programming algorithm for that case.

Let us assume a problem GBD(P, c) with a power set P bounded by a param-
eter r and an arbitrary cost function c. W.l.o.g. we assume in the following a
continuous power set, i.e., each power up to r is allowed. (If one is not allowed
we could simply allow it, giving it the same cost as the next higher allowed
power.) Also w.l.o.g we assume a monotonically increasing cost function.

We are now going to define the central concept of “induced powers” and will
thereafter present an algorithm to solve such a problem on trees and graphs
with bounded treewidth.

5.1 Induced power

First we need the concept of induced powers. Whenever a vertex v is given
power p, it dominates each vertex w for which there is a path from v to w of
length at most p. We call such a path a domination path. Each vertex x on
such a path can be seen as having an induced power of p′ := p − d(v, x), since
the power of vertex v guarantees the p′-neighborhood of x to be dominated.
We call v a source of the induced power.

In Figure 5.1 a power of five on vertex A will e.g. result in an induced power of
one in vertex E. An induced power of one in vertex E, could come from a power
five vertex A as well as from a power three vertex C. Only knowing the induced

32

5.2 An algorithm for trees

A B C D E F G

5 3 1 0

Figure 5.1: If vertex A has power five, vertex C will have an induced power of
three, E an induced power of one, and F an induced power of zero.

power of a vertex therefore does not allow us to say exactly which vertex has
induced it, but we can be sure that the induced power p (like a real power) will
dominate all the p-neighborhood. Knowing in Figure 5.1 that vertex E has an
(induced) power of one, we can guarantee vertex F to be dominated while we
cannot for vertex G. Note that a source of an induced power can also be the
induced power of another vertex. This is why we can think of A inducing C
and C inducing E. Hence an induced power has usually many sources and one
of these is always a neighbor vertex.

5.2 An algorithm for trees

Trees are an especially simple case of a graph with bounded treewidth. Un-
derstanding the algorithm for trees will help to understand the algorithm for
general graphs with bounded treewidth.

5.2.1 Notation

We want to solve problem GBD(P, c) with power set P bounded by a con-
stant k.

We are given a rooted tree T = (V,E) with root r and want to compute the
minimum cost to dominate the whole tree. We use a dynamic programming
algorithm to compute for each vertex v ∈ V the cost Av of the subtree Tv

rooted at v.

The problem is, that vertices inside a subtree can dominate vertices outside the
subtree and vice versa (See Figure 5.2). To deal with this problem, we first see,
that each (domination) path between a vertex in the subtree Tv and a vertex not
in that subtree has to contain the vertex v. Therefore the dominating vertex

33

5 Algorithms for problems with bounded power set

3

Tv

v w

Figure 5.2: A small tree with a vertex v and the corresponding subtree Tv.
Giving vertex w a power of three will induce power one in vertex v.

will induce a power between 0 and r in vertex v. Hence we can distinguish 2r
different cases which we will denote as C = {−r, . . . ,−0,+0 . . . ,+r}.

On the one hand it may be that in the solution vertex v is already dominated
from a vertex outside the considered subtree Tv. In this case it is induced a
power x between 0 and r1 and we do not have to dominate the x-neighborhood
of v, since it is already dominated by the induced power of vertex v. We denote
this case as −x.

If, on the other hand, vertex v is not dominated from outside the subtree, then
this vertex has to be dominated by a vertex inside the subtree. This vertex
will again induce a power x between 0 and r in vertex v. It will this time
dominate vertices outside the subtree which are within distance x of v. This
case is denoted by +x.

To simplify the presentation we will also define an ordering on the cases of C:

−r < −(r − 1) < · · · < −1 < −0 < +0 < +1 < · · · < +(r − 1) < +r

In our algorithm we will compute Av(c) for each vertex v and each case c ∈ C.

Av(−x) = min{c(D, p) | (D, p) dominates V (Tv) \ Nx(v)}

Av(+x) = min{c(D, p) | (D, p) dominates Tv and induces power x in v}

Thereby we can observe a monotonicity in Av. Clearly the cost Av(−x) cannot
be greater than Av(−y) for any y ≤ x, since the vertices to be dominated in

1A power of r actually cannot be induced from outside, we nevertheless compute this value,

since we can use this value in the algorithm.

34

5.2 An algorithm for trees

Av(−x) form a subset of those in Av(−y). An example is given in Figure 5.3.
For the same reason Av(+y) cannot be greater than Av(+x) for any y ≤ x. It
should also be clear that always Av(−0) ≤ Av(+0), since we have to dominate
one vertex more in the +0 case, namely v. Hence we can conclude:

Av(c1) ≤ Av(c2) for all c1 ≤ c2

v

Figure 5.3: A part of a tree. If vertex v is induced power zero, one, or two
from vertices outside the subtree Tv the marked vertices are already
dominated and the remaining vertices for a larger induced power
are clearly a subset of the remaining vertices of a smaller induced
power.

5.2.2 Algorithm

With this notation we can describe the algorithm. We use a bottom up ap-
proach to compute Av for each tree vertex v, i.e., we first compute Av for
the leaves and further process a vertex v for which all the child vertices have
already been processed.

Leaves

Computing Al is very simple for a leaf l. For the negative cases the leaf is
already dominated from vertices outside the subtree and we see from the def-
inition of Av(−x) that there are no vertices of Tv left to dominate. Therefore
the cost is clearly zero.

35

5 Algorithms for problems with bounded power set

Al(−x) = 0

For the positive case +x the subtree has to guarantee an (induced) power of x

in l. Since we are considering a leaf, the subtree consists of only a single vertex
and we have to give it the requested power.

Al(+x) = c(x)

Inner vertices

After the leaves are processed, we will choose an inner vertex v, whose child
vertices ch(v) are already processed. Computing Av(+r) is especially easy,
since the requested power cannot be induced, it can only result from vertex v

being assigned power r directly. Therefore we need cost c(r) for that vertex
but we can guarantee the neighbors of v an induced power of r − 1. We can
now exploit the monotony and simply use Aw(−(r − 1)) to determine the cost
of the subtrees of a child w.

Av(+r) = c(r) +
∑

w∈ch(v)

Aw(−(r − 1)))

If smaller powers are requested (case +x for 0 < x < r) there are two possi-
bilities. The power of x can either be assigned, as in the +r case, or it can be
induced by some child vertex. Therefore we have to try all cases and choose
the minimum cost.

Av(+x) = min

(

c(x) +
∑

w∈ch(v)

Aw(−(x − 1)),

min
w∈ch(v)

(Aw(+(x + 1)) +
∑

u∈ch(v)\{w}

Au(−(x − 1)))

)

The computing for the +0 case works exactly in the same way, but the last
term would result in a Aw(−(−1)) or Au(−(−1)) which has to be changed to

36

5.2 An algorithm for trees

Aw(+0) or Au(+0) respectively. This is because +0 means, the vertex is just
managed to be dominated, but does not dominate other vertices. Hence we
have to make sure that the other subtrees are also dominated by themselves
by requiring +0.

To compute the negative cases is again quiet simple. If we are about to compute
Av(−x) we can be sure that v is already dominated and has an induced power
of x. Therefore we can again guarantee all the neighbor vertices an induced
power of x − 1. In the −0 case we can again not guarantee the neighbors an
induced power and we have to choose +0: Av(−0) =

∑

w∈ch(v)(Aw(+0)) and
Av(−x) =

∑

w∈ch(v)(Aw(−(x − 1)))for 1 ≤ x ≤ r.

In a case as shown in Figure 5.4 where one child dominates another child the
above computation could give a cost that is too high. However such a case
would induce a power in vertex v. Therefore the correct value will be in the
corresponding positive case. This is why we need a postprocessing, where we
let Av(c) := Av(c

′) if c′ > c ∧ Av(c) := Av(c
′). This fixes the problem and can

be justified by the mentioned monotony.

v v

3

0

1

Figure 5.4: If we compute a negative case (-1) and the cost function assigns
c(0) = c(1) = c(2) = c(3) = 1, treating the two child subtrees
separately gives an suboptimal result. Treating separately as in
the left case the cost is c(0)+c(1) = 2 while treating them together
results in cost c(3) = 1.

Result

After all vertices are processed, the root r of the tree is also processed. The
cost of the complete tree is the value of Ar(+0) since the subtree Tr is the
complete tree and +0 requires even the root to be dominated from vertices
inside the tree.

37

5 Algorithms for problems with bounded power set

5.3 An algorithm for graphs with bounded treewidth

We will now use similar concepts as in the tree algorithm to build an algorithm
for general bounded treewidth graphs.

5.3.1 Preconditions

We are given an input graph G = (V,E) with a treewidth of k and an associated
nice tree decomposition < Xi, T >. We further assume a problem GBD(P, c)
with a power set P bounded by r, i.e., no power greater than r is allowed. The
cost function c may be arbitrary, but w.l.o.g. we still assume a monotonically
increasing cost function. We also assume w.l.o.g. a continuous power set, i.e.,
each power up to r is allowed. (If one is not allowed we could simply allow it,
giving it the same cost as the next higher allowed power.) Now we are going
to compute the minimum cost to dominate the whole graph.

5.3.2 The idea

To achieve this, we process the nodes in the nice tree decomposition from the
leaves to the root. For each processed bag Xi we call the already processed
vertices (i.e.,

⋃

{Xj | j is a descendant from i in T}) the inside I of the graph.
The remaining vertices in V (V \ I) are called the outside O. An example is
shown in Figure 5.5.

While computing the cost of the respective inside we encounter the same prob-
lem as in the tree case. Vertices of the inside can dominate outside vertices,
and vice versa, while inducing a power between 1 and r in some bag vertex.
Therefore we use the same notation as in the tree case, but we have to apply
it to all vertices in the bag. We are going to color the vertices in the bags by
elements from the partial ordered set C = {−r, . . . ,−0,+0, . . . ,+r}. We later
write +x to denote a positive color and −x for a negative one.

The coloring of the bag is based on “guarantees”. We are going to make
guarantees for the induced power of a positively colored vertex, while we can
use the guarantees made by the negatively colored vertices.

38

5.3 An algorithm for graphs with bounded treewidth

Figure 5.5: A graph with bounded treewidth. The dark vertex set represents a
bag. Then the vertices below form the inside.

A color of +x means that we have to guarantee that the corresponding vertex
has an (induced) power of (at least) x with a source in the inside, while a color
of −x means we can already assume an induced power of x. (We have to justify
this later.)

Therefore we can for example guarantee a vertex a power of x if it has a neighbor
which is guaranteed a power of x + 1. Now let Ai(c1, . . . , cni

) be the minimum
cost of dominating the inside-graph G[I] assuming the given colors.

The formal definition is a bit complex. Since we have to express the given
guarantees by assigning powers which have no cost. This is done by explicitly
requiring the power, but subtracting the cost afterwards:

PCC = {(D, p) | (∀v∈Iv is dominated)

∧(cl = −x ⇒ vl ∈ D ∧ p(vl) = x)

∧(cl = +x ⇒ vl has an induced power of x)}

39

5 Algorithms for problems with bounded power set

,

Ai(c1, . . . , cni
) = min

(D,p)∈PCC

c(D, p) −
∑

1≤j≤ni

{

c(x) if cj = −x

0 otherwise

We further define for a bag of size of n a color graph Cn:

Cn = (Cn, {((c1, . . . , ct, . . . , cn), (c1, . . . , c
′
t, . . . , cn)) | ct = c′t + 1})

That is, the vertices are all possible colorings of the bag, and an edge from one
coloring to another exists iff both colorings differ only in a single position and
in that position the first color has a value one greater than the second color.
An example of such a color graph is given in Figure 5.6.

+1+0

+1−0

+1−1 +0−0

+0+0

+0+1

+1+1

−0+1

−1+1

−1+0

−1−0

−1−1

−0−0

−0+0

+0−1

−0−1

Figure 5.6: A color graph for {−1,−0,+0,+1}2.

The same monotony as in the tree case holds for Ai here, since for every edge
in the color graph the vertices to be dominated in the first coloring form a
superset of the ones to be dominated in the second coloring. We will make
use of this fact frequently. We can in many situations with a clear conscience
consider only one coloring, since we can be sure that all other possible colorings
cannot have lower costs. For example, requiring a power of four would clearly
also dominate the 3-neighborhood but it obviously cannot be cheaper. We say
larger colors have larger requirements and therefore (possibly) larger costs.

40

5.3 An algorithm for graphs with bounded treewidth

The algorithm now computes Ai for all possible colorings of all bags in the nice
tree decomposition from the leaves to the root. The cost of the whole graph
then is Ar(+0, . . . ,+0), since the root r of the nice tree decomposition is the
last one processed which means that the inside spans the whole graph, and
each vertex now is dominated.

5.3.3 The algorithm

The main algorithm goes as following:

Algorithm 1.

forall nodes i in T (from leaves to root) do
forall colorings C do

compute Ai(C)
od

od
output Ar(+0, . . . ,+0)

We now compute the Ai depending on the type of node:

LEAVES

W.l.o.g. we assume that leave-bags consist of only one vertex.

For negative colors we can assume the vertex to be dominated, therefore
we have no cost for now: Ai(−x) = 0.

Now we want to assign a positive color. Since this is the only vertex (and
also the only vertex in the inside) we have to guarantee the required power
by assigning power x to the vertex, resulting in cost c(x): Ai(+x) = c(x).

INTRODUCE

We are now going to process the introduce node i with child j, whereas
Xi = {v1, . . . , vnj

, v} and Xj = {v1, . . . , vnj
}. Since we process T from

the leaves to the root, the child node is already processed and therefore
Aj already known.

41

5 Algorithms for problems with bounded power set

+6 −6−1 −5 −5 −5 −5

+5 +6 +4 −4 −6−1 −2

−6

−6

Figure 5.7: The marked vertices are the bag Xj . The upper vertex is to be
introduced. When computing the cost for the first coloring, we
lookup the second coloring.

Introduce nodes are the most complex ones, almost all of the work has
to be done here. We will first distinguish between positive and negative
colors of the introduced vertex v.

Negative colors

A negative color −x of a vertex guarantees the vertex to be dominated
and an (induced) power of x. Obviously adding a negative color vertex to
the bag cannot raise the cost, but it can sometimes lower it, since the new
vertex is capable of inducing powers in the already processed vertices.

Since the introduced vertex v is guaranteed to have power x, we can
guarantee all the neighbors of v a power of x− 1, as they will be induced

42

5.3 An algorithm for graphs with bounded treewidth

by v. Therefore we have to find an appropriate coloring C ′ which we will
use to find the correct value in Aj and can therefore color the neighbor
vertices of v with color −x, unless they have higher requirements in the
coloring C to be computed.

Figure 5.7 shows an example. The first picture shows the coloring C

for Xi to be computed, the second one shows the coloring C ′ of Xj which
we will lookup. We can replace −4 by −5 since we can guarantee a power
of five and a power of five will dominate at least the same vertices as
a power of four. We can replace color +5 by −5, because the added
vertex will guarantee this vertex the needed power of five. The colors +6
and −6 have to be preserved, since they cannot be justified by the new
vertex. The new vertex can also induce powers to bag vertices, which
are no direct neighbors, for example the very left vertex in Figure 5.7.
We do not have to care about them, since they will also be induced by
a neighbor bag vertices, which was handled while computing the child
node.

Therefore we compute the new values as follows:

Ai(c1, . . . , cnj
,−x) = Aj(c

x
1 , . . . , cx

nj
)

cx
a :=

{

−(x − 1) if |ca| ≤ (x − 1),

ca otherwise.

Positive colors

Now assume the case, that we want to give the new vertex v a positive
color +x, i.e., we want to compute Ai(c1, . . . , cnj

,+x). A color +x means,
that we have to guarantee the vertex an (induced) power of x.

The power x of vertex v can either be induced by another vertex w ∈ I,
or it must be assigned to v. If it is already induced, we are done, since
we know, that the cost is the same as without the new vertex. If that
power is not already induced, we have to assign the required power to v.
Assigning that power will result in a higher cost, but it will also induce
other vertices, as in the case of the negative colors.

43

5 Algorithms for problems with bounded power set

Now the problem is to decide, whether the power is already induced or
must be assigned. To decide this, we use another observation: Whenever
a vertex w ∈ I induces a power of x in v, it will also induce power x + 1
to a neighbor of v. (See Figure 5.8.)

+2

(3)

+5

(4)

Figure 5.8: If the power five vertex induces a power of two to the introduced
vertex v, there has to be a neighbor of v with induced power three.

Therefore we can check, whether the power is induced by recoloring the
neighbor vertices of v: If a neighbor vertex u ∈ N(v) ∩ I is induced a
power of x+1 anyway, we can color this vertex +(x+1) and the cost Aj

will not change. If the cost changes we can be sure, power x + 1 was not
induced in u.

Now we try this for every neighbor u ∈ N(v) ∩ I. If we find a neighbor
which does not change the cost, the power is induced. If the power
changes for each neighbor, the power is not induced and we have to
assign the power.

+0

+1

−4 +2

+1

−4

Figure 5.9: A part of a graph with two different colorings. The marked area is
the current bag the upper vertex is to be introduced.

Figure 5.9 gives another example. Since the left bag vertex is guaranteed
a power of four, the right bag vertex is guaranteed to have an induced
power of two, (and therefore the power of one is guaranteed to v,) no
matter what color the right bag vertex is. If the coloring only requires

44

5.3 An algorithm for graphs with bounded treewidth

the right bag vertex a power of zero through a color of +0, we cannot
decide, whether the required power of v is induced by simply examine the
colors. We have to check the cost. If we recolor the neighbor vertex as
in the right part of the example, we will find the same cost and therefore
know, that the power is already induced.

Formally we can say +x is induced iff

∃vt ∈ Xj : Aj(c1 . . . cnj
) = Aj(c1, . . . , ct−1,+(x + 1), ct+1, . . . , cnj

).

.

Now we can compute the cost as follows:

Ai(c1, . . . , cnj
,+x) =

{

Aj(c1 . . . cnj
) if + x is induced,

c(x) + Ai(c1, . . . , cnj
,−x) otherwise.

FORGET

Now we are going to process a forget node i (Xi = {v1, . . . , vni
}) with its

child node j (Xj = {v1, . . . , vni
, v}).

Since the vertex v should be forgotten, we must make sure it is dominated,
but we do not have to require it to dominate any neighbor vertices. This
is exactly the situation that corresponds to +0.

Therefore we do not need to compute any minimum and can simply write:

Ai(c1, . . . , cni
) = Aj(c1, . . . cni

,+0).

JOIN Now i is a join node with the two children j1 and j2. (Xi = Xj1 = Xj2 =
{v1, . . . , vni

})

While computing Aj1 and Aj2 we computed the cost of the respective
inside, which can be seen as a single branch of the graph. The join node
now joins those two branches to a single branch, as shown in Figure 5.10.

45

5 Algorithms for problems with bounded power set

+2 −3

−3 −3+2 −2

Figure 5.10: Two branches of the graph will be joined to a single branch. The
marked vertices are the bags, which consist of exactly the same
vertices. If a vertex is dominated from outside (-3) both branches
are. If a vertex has to dominate the outside (+2), one branch has
to do the domination, while the other is dominated by the first
one (-2).

This means we have to add the costs of the two branches in such a way
to assure the required colors.

We will do this by finding “dividing” colorings C ′ = c′1, . . . , c
′
ni

and C ′′ =
c′′1 , . . . , c

′′
ni

for the coloring C = c1, . . . , cni
to be computed. After that we

simply need to add the appropriate costs and take the minimum.

Ai(C) = min
C′,C′′dividing C

(Aj1(C
′) + Aj2(C

′′))

C ′, C ′′ divide C iff :

{

ct = −x ⇒ c′t = c′′t = ct

ct = +x ⇒ (c′t = +x ∧ c′′t = −x) ∨ (c′t = −x ∧ c′′t = +x)

We made sure that dividing colors assure the requested values in coloring

46

5.3 An algorithm for graphs with bounded treewidth

C and took always the lowest possible requirements, which has to be
optimal because of the effective monotony.

If a vertex is dominated from outside, both branches are dominated.
Therefore we can guarantee this power to both branches. If the vertex
has to dominate the outside, one branch has to do the domination. The
other one then is dominated by the first one.

5.3.4 Time complexity

The computation for the forget node was as follows:

Ai(c1, . . . , cni
) = Aj(c1, . . . cni

,+0)

This can obviously be processed in O(1) time.

The negative colors of the introduce node was computed as follows:

Ai(c1, . . . , cnj
,−x) = Aj(c

x
1 , . . . , cx

nj
)

cx
a :=

{

−(x − 1) if |ca| ≤ (x − 1)

ca otherwise

Since we have to test each color in the bag and we assumed a treewidth of k

this can be done in O(k) time.

For the positive colors of the introduce node we have to decide, whether the
required power is already induced. This is done by testing

∃vt ∈ Xj : Aj(c1 . . . cnj
) = Aj(c1, . . . , ct−1,+(x + 1), ct+1, . . . , cnj

)

which will also work in O(k) time.

For the join nodes, Ai is computed as

Ai(C) = min
C′,C′′dividing C

(Aj1(C
′) + Aj2(C

′′)).

47

5 Algorithms for problems with bounded power set

Therefore the running time in this case is determined by the number of values
over which the minimum is taken.

Here is again the definition of “divide”:

C ′, C ′′ divide C iff :

{

ct = −x ⇒ c′t = c′′t = ct

ct = +x ⇒ (c′t = +x ∧ c′′t = −x) ∨ (c′t = −x ∧ c′′t = +x).

We see, that the resulting number of pairs mainly depends on the number of
positive colors in the coloring. Having z positive colors in the coloring will
result in 2z different cases.

There are
(

ni

z

)

places for the positive values and, since the powers are bounded
by r, there are both r + 1 positive and r + 1 negative colors. Hence there are
(

ni

z

)

(r + 1)ni different colorings with z positive colors.

Taking the sum over all possible colorings results in:

ni
∑

z=0

2z

(

ni

z

)

(r + 1)ni = (3r + 3)ni

The computation for the join nodes is the most complex one. Since the input
graph has treewidth k the bag size cannot be greater than k+1. Hence, the time
complexity on a nice tree decomposition with N nodes is O((3r + 3)k+1N).

Because of this algorithm we can conclude:

Theorem 5. Each problem GBD(P, c) with P bounded by a constant r can be
solved on a graph with treewidth k in time O((3r + 3)k+1N).

48

6 Problems with unbounded power
set

We already showed in this thesis that all problems GBD(P, c) with a bounded
power set P are NP-complete on general graphs. This changes if arbitrary large
powers are allowed. For many such problems there is an efficient algorithm,
while for many others the complexity is still unknown.

The crucial difference lies in the fact, that arbitrarily large powers in many cases
allow us to replace two dominating vertices by a single one with correspondingly
higher power. This can sometimes greatly simplify the structure of a solution,
which makes such a solution much easier to find.

We are going to examine different problems GBD(P, c) and will sometimes
refer to the special cases Broadcast Domination and General Broadcast

Domination. The definitions of those problems are again given in Table 6.1.

Problem P c(p), p ∈ P

Broadcast Domination {1, 2, . . . } p

Modified Broadcast Domination {0, 1, 2, . . . , r} p + 1

Table 6.1: The definitions of Broadcast Domination and Modified

Broadcast Domination.

6.1 Cases with an efficient solution

We call a partial domination (D, p) efficient if every vertex v in G is dominated
by exactly one dominating vertex d ∈ D.

For an efficient domination (D, p) we will similar to [16] define the domination

49

6 Problems with unbounded power set

graph GD,p = (D, {{u, v} | Np(u)+1(u) ∩ Np(v(v) 6= ∅}). That is a graph
consisting of the dominating vertices, which are connected, if the vertex sets
they dominate in G are connected by some edge. An example is given in
Figure 6.1.

1

1

2

x

x y

y

z
z

Figure 6.1: A graph with an efficient domination and the resulting domination
graph.

Lemma 3. For a problem GBD(P, c) with P = N and a cost function that
holds c(a) + c(b) ≥ c(a + b), there is always an efficient solution.

Proof. Assume we have a solution (D, p) which is not efficient. Then there
is a vertex v which is dominated by two dominating vertices u and w, as in
the example in Figure 6.2. Since they both dominate vertex v, there is a path
between u and w with length at most p(u) + p(w). Now let v′ be the vertex
which is on this path with distance p(w) from vertex u. This vertex has distance
p(w) from u and a distance of at most p(u) from w. Assigning this vertex a
power of p(u) + p(w) will therefore induce the original powers in u and w. We
can therefore replace u and w by the single domination vertex v′, which will,
because of the required restriction on the cost function, result in no higher cost
than the original solution.

Obviously the restriction holds for both Broadcast Domination and Modi-

fied Broadcast Domination. Therefore we know there is always an efficient
solution for those problems. But the structure of such a solution can be proved
to be even simpler, as shown next.

50

6.2 Cases with a radial solution

3

1 2

u v w

Figure 6.2: A vertex is dominated by two different dominating vertices. We can
dominate all the vertices by a single by a single dominating vertex.

6.2 Cases with a radial solution

If we require stronger restrictions we can even more simplify the resulting
structure of the solution.

Lemma 4. If c(a) + c(b) ≥ c(a + b) + 1 there is always a radial solution, i.e.,
as solution consisting of a single dominating vertex.

Proof. Since the required restriction is stronger than the restriction in Lemma 3,
there is always a efficient solution. Now assume two dominating vertices u and
w which are connected in the domination graph. Figure 4 shows an example of
this case. We can now temporarily raise the power of vertex u by one. Then it
will dominate a vertex which is already dominated by w and we can therefore
replace it by a single domination vertex of power p(u) + p(w) as shown in the
proof of Lemma 3. The total cost will now result in c(p(u) + p(w)) which will
by the required restriction have no higher cost than c(p(u)) + c(p(w)) which
was the original cost.

2

4

1

Figure 6.3: Two domination vertices can be replaced by a single one if the cost
function allows it.

The restriction of Lemma 4 holds for example for Modified Broadcast

51

6 Problems with unbounded power set

Domination. Therefore all we need to solve this problem is finding a cen-
tral vertex in G and assigning it power rad(G).

6.3 Cases with a linear solution

With a problem like Broadcast Domination, the requirements of Lemma 4
are not fulfilled and there is generally no radial solution. But even with this
problem we can find a simpler structure. Whenever the domination graph has
a vertex with degree of at least three, we can replace the effected dominating
vertices by a single domination vertex. (See Figure 6.4.)

Figure 6.4: A domination graph with the dominated vertices adumbrated by
the circles. If the domination graph has a vertex of degree at least
three, we can again replace the effected vertices by a single one.

The resulting domination graph will therefore consist only of vertices of degree
at most two, which can only be a path or a circle. Such a solution can be found
in polynomial time. Details about the replacement and the algorithm can be
found in [16].

6.4 Cases with unknown complexity

As shown above in some cases there is an algorithm to solve a problem GBD(P, c)
efficiently. But to other cases the above reasoning can not be applied.

This can either be due to the power set or the cost function. If for example only

52

6.4 Cases with unknown complexity

square numbers are allowed in the power set, we generally cannot substitute
the domination vertices with the required power and would need to use a higher
power which again will result in a higher cost.

The problem can also be the cost function. Even if we allow arbitrary powers,
we cannot easily substitute dominating vertices if the cost function does not
meet the needed requirements. An example are functions like c(x) = x2 or
even c(x) = x − 1.

The complexity of those problems is still unknown and will be subject of further
research.

53

7 Conclusion

In this thesis we examined a couple of problems in the domain of General

Broadcast Domination.

The complexity is well understood for problems with a bounded power set.
On planar, chordal, and bipartite graphs these problems are NP-complete. On
graphs with bounded treewidth they can be solved efficiently. On still other
graph classes, the complexity depends on the exact parameters of the problem.
For example on split graphs Dominating Set and Roman Domination are
NP-complete, but there is a trivial solution if a power of two is allowed.

One direction for research could be to examine other graph classes or to study
those problems from the viewpoint of approximation or parameterized com-
plexity. A parameterized approach for Roman Domination has recently been
presented in [11].

Problems with an unbounded power set seem to be much more irregular. Some
problems are NP-complete, while others have trivial solutions. Even problems,
which only slightly differ in the cost function turn out to have quite different
complexity. For example a cost function c(x) = x + 1 results in a trivial
solution, with a cost function c(x) = x we need a sophisticated algorithm and
the complexity with a cost function of c(x) = x − 1 is still unknown.

Recently, Heggernes and Lokshtanov [16] have reported some progress in this
area, but many questions are still open. Even the complexity of some practi-
cally motivated variants like a cost function of c(x) = x2 is still unknown.

Further research should try to find a stronger criterion to recognize NP-complete
cases and to develop new techniques to solve other cases.

54

Bibliography

[1] Jochen Alber. Exact Algorithms for NP-hard Problems on Networks: De-
sign, Analysis, and Implementation. PhD thesis, Universität Tübingen,
2002. 16

[2] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Al-
berto Marchetti-Spaccamela, and Marco Protasi. Complexity and Approx-
imation: Combinatorial Optimization Problems and Their Approximabil-
ity. Springer, 1999. 16

[3] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theor. Comput. Sci., 209(1-2):1–45, 1998. 16

[4] Andreas Brandstädt. Information system on graph class inclusions, 2006.
http://wwwteo.informatik.uni-rostock.de/isgci/. 13, 24

[5] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes:
a Survey. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1999. 8, 13

[6] Ernest J. Cockayne, Paul A. Dreyer Jr., Sandra Mitchell Hedetniemi, and
Stephen T. Hedetniemi. Roman domination in graphs. Discrete Mathe-
matics, 278(1-3):11–22, 2004. 24

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill, 2001.
11

[8] Reinhard Diestel. Graph Theory. Springer, 2005. 8, 11

55

Bibliography

[9] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999. 16

[10] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998. 27

[11] Henning Fernau. Roman domination: A parameterized perspective. In Jiŕı
Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková, and Julius
Stuller, editors, SOFSEM, volume 3831 of Lecture Notes in Computer
Science, pages 262–271. Springer, 2006. 18, 24, 54

[12] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979. 8, 11, 24

[13] Jiong Guo, Rolf Niedermeier, and Daniel Raible. Improved algorithms and
complexity results for power domination in graphs. In Maciej Liskiewicz
and Rüdiger Reischuk, editors, FCT, volume 3623 of Lecture Notes in
Computer Science, pages 172–184. Springer, 2005. 17

[14] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater, editors.
Domination in Graphs: Advanced Topics, volume 209 of Pure and Applied
Mathematics. Marcel Dekker, 1998. 17

[15] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. Funda-
mentals of Domination in Graphs, volume 208 of Pure and Applied Math-
ematics. Marcel Dekker, 1998. 17

[16] Pinar Heggernes and Daniel Lokshtanov. Optimal broadcast domination
of arbitrary graphs in polynomial time. In Kratsch [18], pages 187–198.
17, 49, 52, 54

[17] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of
Lecture Notes in Computer Science. Springer, 1994. 16

[18] Dieter Kratsch, editor. Graph-Theoretic Concepts in Computer Science,
31st International Workshop, WG 2005, Metz, France, June 23-25, 2005,
Revised Selected Papers, volume 3787 of Lecture Notes in Computer Sci-
ence. Springer, 2005. 56

56

Bibliography

[19] Mathieu Liedloff, Ton Kloks, Jiping Liu, and Sheng-Lung Peng. Roman
domination over some graph classes. In Kratsch [18], pages 103–114. 24

[20] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006. 16

[21] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic as-
pects of tree-width. J. Algorithms, 7(3):309–322, 1986. 16

[22] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001. 16

[23] Jie Wu and Hailan Li. On calculating connected dominating set for efficient
routing in ad hoc wireless networks. In DIAL-M, pages 7–14. ACM, 1999.
17

57

Danksagung

Ich danke meinen Betreuern Jiong Guo und Rolf Niedermeier für die mir
gegenüber aufgebrachte Geduld und die vielen Tipps und Hinweise, die mir
bei der Erstellung dieser Arbeit sehr geholfen haben.

Außerdem danke ich meiner Mutter, Günter und meinen Großeltern, die mich
während des Studiums und insbesondere während der Diplomarbeit auf jede
mögliche Art unterstützten.

58

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwen-
dung der angegebenen Quellen und Hilfsmittel angefertigt habe.

—————————————————–
Jena, den 28.04.2006 (Michael Schnupp)

59

	Introduction
	Preliminaries
	Notation
	Definition of some problems
	Graph classes
	Tree Decomposition
	Handling of NP-complete problems

	General Broadcast Domination
	Motivation
	Formal definition
	Special cases

	NP-completeness for problems with bounded power set
	NP-completeness of Roman Domination
	NP-completeness of (a,b)-Domination
	NP-completeness of r-Dominating Set (and other problems)

	Algorithms for problems with bounded power set
	Induced power
	An algorithm for trees
	Notation
	Algorithm

	An algorithm for graphs with bounded treewidth
	Preconditions
	The idea
	The algorithm
	Time complexity

	Problems with unbounded power set
	Cases with an efficient solution
	Cases with a radial solution
	Cases with a linear solution
	Cases with unknown complexity

	Conclusion
	Bibliography

